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92 CHAPTER I

INTRODUCTION AND PRELIMINARY

A. BRIEF REVIEW

A microstrip device basically consists of a sandwich of two

parallel conducting layers separted by a single thin dielectric

substrate. The lower conductor functions as a ground plane, and the

upper conductor may be a simple resonant patch of regular shape, a

resonant dipole, or a monolithically printed array of patches or dipoles

and the associated feed network. The concept of microstrip antennas was

first proposed in this country a by Deschamps [1] and in France by

3Gutton and Baissinot [21. However, the main interest in the microstrip

antenna concept did not emerge unitl the early 1970's. It was probably

the need for conformal missile and spacecraft antennas that provided

this impetus together with the advance of printed circuit technology

based on the good selection of microstrip substrates that were becoming

available. The first practical antennas were developed in the early

1q70's by Howell [3] and Munson [4]. Since then, extensive research

IL
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and development of microstrip antennas have led to diversified

applications and to the establishment of the topic as a separate entity

within the broad field of microwave antennas. The state of the art, in

both theory and experiment, is summarized in the books by Bahl and

Bhartia [51, and James, et al. [61. In particular, a recent special

issue of IEEE Transactions on Antennas and Propagation [71 was devoted

to microstrip antennas and arrays. In this special issue, Carver and

Mink [81 presented a comprehensive survey of the state of microstrip

antenna element technology; while Mailloux, et al. [9] discussed K

microstrip array design techniques.

In its simplest configuration a microstrip antenna consists of a

thin metallic radiating patch bonded to a thin grounded dielectric

substrate (Figure 1.1). The patch conductor typically has some regular

shape, for example, rectangular, circular or elliptical. The feed is

often a coaxial probe or a microstrip transmission line. Microstrip

antennas exhibit all the properties inherent to microstrip devices: a)

they are light weight, small size and low profile planar configurations

which can be made conformal; b) they are inexpensive to build and

ideally suited for large scale production by printed circuit techniques;

c) they are compatible with modular designs (solid state devices such as

oscillators, amplifiers, phase shifters, etc., can be added directly to

the antenna substrate board); d) their feed lines and matching networks

can be fabricated simultaneously with the antenna structure so that

discontinuities due to connectors can be eliminated. All these

2



h.

RADIATING PATCH

*-*

e -GROUND PLANE

DIELECTRIC SUBSTRATE

Figure 1.1. Microstrip antenna configuration.

advantages compensate, at least in part, a number of drawbacks: a)

simple microstrip antennas have narrow bandwidths; b) their gain is

low; c) they have a small power handling capability; d) their dielectric

losses reduce the radiation efficiency; e) unwanted surface waves may

cause spurious radiation at the edges of the microstrip patch.

Most of the work in printed antenna theory and technology during

the last decade was for antennas operating in the UHF to microwave

frequency bands (300 MHz to 10 GHz). There are two somewhat successful

methods in calculating input impedance and radiation. One is the

transmission line model proposed by Derneryd [10], and the other is

the cavity model used by Lo, et al. [I]. However, both methods fail

3
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Snto rigorously account for the surface waves on the antenna substrate and

for the mutual coupling between antenna elements. More recently, a

moment method solution to the microstrip strip antenna problem was

proposed by Newman and Tulyathan [12]. In [12], an integral equation

was formulated with the aid of image theory which accounted for the

presence of the ground plane; the field within the dielectric slab was

treated by an equivalent current. This method gives good results for

the input impedance, but requires an extremely accurate evaluation of

the elements of the impedance matrix.

The above studies all deal with planar substrates. From a
0- practical viewpoint it is also important to consider microstrip antennas

and arrays on curved surfaces, especially on portions of cylinders,

cones or spheres. Microstrip dipoles have indeed been considered for

cylindrical substrates and some preliminary results have been published

by Alexopoulos, et al. [13], who utilized the dyadic Green's function to

give the electric field produced by an electric dipole tangent to the

outer surface of the coating layer. Their results were restricted to

.- the far field and to the surface field. At about the same time, Fonseca

and Attilio [30] reported results on the radiation patterns of

microstrip wraparound antennas using a theory based upon the dyadic

S. Green's function for a dielectric coated cylinder. In both papers,

the Green's dyadic was constructed using the principle of scattering

L--, superposition. The free space Green's dyadic employed was quoted from

4
• 0
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Tai [19] who used a different method from the one adopted in this work

for constructing the free space Green's dyadic. However, the above

papers did not specifically address the mutual coupling problem.

B. STATEMENT OF PROBLEM

It is likely that there will be increasing interest in millimeter

wave systems and applications, such as imaging array antennas and

aircraft-to-satellite communications. Also of interest is the

development of complete monolithic systems which combine antenna

elements or arrays on the same substrate as the integrated RF/IF

front-end detector and amplifier circuits. In these applications,

substrates are often thicker and have higher dielectric constants than -

at lower frequencies. Consequently the electrical performance of these

antennas will be severely degraded due to surface waves or mutual

coupling. It is then evident that the analysis of mutual coupling

between microstrips is important in the design of antenna arrays,

especially if tight pattern control or low sidelobes are required.

This work considers the mutual coupling of two types of conformal

microstrip antennas: -

1. microstrip patches on a dielectric slab
(dielectric slab problem); -.

2. microstrip patches on a dielectric coated cylinder
(dielectric coated cylinder problem).

5.
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C. OVERVIEW OF APPROACH

1. Integral Equation Formulation

The present approach is based on the Green's function method

which yields the total electric field E produced by the electric surface

- currents -Is on the microstrip antenna elements (patches) as

E E + f G J ds (1.1)
S

where E is the incident field excited by an impressed curent source Ji;

G is an appropriate dyadic Green's function which accounts for the

grounded substrate; and S is the surface of the microstrip patches.

Introducing the boundary condition on the microstrip patches

n E=O onS (1.?)

yields an electric field integral equation for Js; here n is the unit

vector normal to the surface of the microstrip patches.

2. Moment Method Solution

The integral Equation (1.2) is solved using the Galerkin form of

the moment method where both the basis and testing functions are taken

• as a surface patch dipole mode. Thus the unknown current Js is expanded

in a set of N basis functions or modes

41-
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NJ

n=1

where Jn is the nth mode and In is its unknown amplitude. Use of the

.same set of functions as testing function leads to a system of linear

algebraic equations to be solved for the unknown In

[zl[] = [I , (1.4)

where [ZI is known as the impedance matrix with elements

Zmn=- Em *J n ds (1.5)
Sn

[VI is the voltage vector whose elements are given by

V= f E • Ji dv (1.6)
V•m .

and In are the elements of the current vector [I]. In Equations (1.5)

and (1.6), Em is the electric field due to the mode current Jm in the

presence of the dielectric substrate and ground plane; Ji is the

impressed (suurce) current; and Sn, Vi denote the surface, volume where

currents Jn, Ji exist, respectively. The expressions in (1.5) and (1.6)

were obtained using the reciprocity principle.

7" .. . . . . . . . . . . .

- '- - . . .*'
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".-'C 3. Feed Modeling

Referring to Figure 1.2(a), a coaxial feed with terminal current Ii

K can he modeled by

J= zi 6(x-xo)6(y-y o) (1.7)

to represent a z-directed current source at the probe position (xoYo .

To account for the probe self inductance, jX (for ej mt time dependence)
p

can he added to the input impedance, where [8]

X =- tan(/r kot)p -C r o18
r

with Z°  /Po/C k = , ° and e are the constitutive
o0 o 0 /0 00

parameters of free space (air); and t is the thickness of the dielectric

layer with dielectric constant e

In Figure 1.2(b), a microstrip line feed with terminal current Ii

also can he modeled by using Equation (1.7) to represent an equivalent

z-directed current source at the point (xoy) where the feed line joins

the microstrip patch. Such a model furnishes good results for the

narrow feed lines that are in common use. Alexopoulos and Rana [141

pointed out that the voltage term (1.6) should be modified by the factor

"w./t to account for edge effects of the microstrip line of width W,

where We is the effective width given by [81

e8



GROUNDED DIELECTRIC GROUNDED DIELECTRIC

MICROSTRIP MICROSTRIP
PATCH PATCH

Uy
(K y )- (xy 0

y '-' 00-1i

Ox 0 ix

(a) COAXIAL FEED ()MICROSTRIP LINE
FEED

moil

z

+ Ii

/ 1'f r 0 V1

GROUND IEECTRIC 0

FEED MODEL (d) PORT CURRENT
AND VOLTAGE

Figure M.. tMicrostrip antenna feed modeling.
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.- E + 0.3e W + 0.262t
We W+0.412 E - 0.258 W + 0.813t t . (1.9)

In Equation (1.9), the effective dielectric constant

r +1 Cr-1 I lot-r r lot

e 2 + 2 W (1.10)

The feed model (Figure 1.2(c)) can be thought of as a port with terminal

_ current Ii and voltage Vi as shown in Figure 1.2(d). Vi is the voltage

Hue to surface current on the patch excited by the impressed Ji.

4. Port Impedances

An M-element microstrip array can be modeled as an M-port whose

currents and voltages (defined in Figure 1.3) are related in matrix form

as

[zP] [IP] = [vP I  (1.11)

One should differentiate between these port quantities (indicated by the

superscript p) and those associated with the moment method solution

defined in Equations (1.4) -(1.6). The moment method quantities depend

on the choice of the basis functions. The port quantities are the ones

of interest for determining input impedance and mutual coupling. The

relation between these quantities is now described.

Vn

S4
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jP

.-

.-. ..

m P

IIM

:+ .

VP Vm
Figure 1.3. Voltages and currents of an M-port(

The input impedance at port m is given byithtoa

- ; m " OMd

zp Vm d

"n[ pl (1.12) : ..

electric field due to the N expansion modes Jj&, t--I,2,...,N, excited by .-

-m
Ji with the other ports open circuited. E can be expanded in terms

of E which represent the electric fields due to expansion modes J as

follows

. .. . . . . .. . . .



E I (1.13)

-9,=

Substituting Equation (1.13) into (1.12) and applying (1.6) yields

VP(m)

•m N m2
" I V (1.14)

m
where I are the expansion mode current amplitudes found from Equation

(1.4); Vm are the voltages induced at port m due to E,; and V(m).a V(

denotes the total voltage at port m due to Em

The mutual impedance between port m and port n can be written as

-m -n

E. * i  dv

- Vnmn ,P I.

n n

where Em is the total electric field due to N expansion modes,

. =1,2,...,N, excited by d. with port n open circuited. Using

Equations (1.6) and (1.13) in (1.15) produces

N M vn
I zr Vn

VP(m)
q- : - -~=mp (1.16)mn IP In  mP

m n in

[.- 4
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n -
where V. are the voltages induced at port n due to E when J. is set

to zero (open circuited); and VP(m) is the total voltage at port n due

to Em. Via reciprocity,

p= Z p  for all m,nmn nm (1.17)

It is common that the mutual coupling is measured in terms of

scattering parameters Smn. From the circuit theory for waveguiding

systems, one finds that the scattering matrix [S] is given by

IS] = ( Z] + [U]) ([Zp] - Eu]) , (1.18)

where [U] denotes the unity matrix.

From the above discussion it is seen that the port impedances are

functions of the impedance matrix [Z]. Therefore, in order to analyze

the mutual coupling between microstrip antennas, it is essential to have

full knowledge of the self and mutual impedances between expansion modes

(i.e., the elements of [Z]). In this work, the major effort will be

focused on the computation of these parameters.

D. ORGANIZATION

A general solution to the dielectric slab problem is presented in.

Chapter II. Numerical results for specific examples are obtained and

compared with measurements. Expressions for the far zone radiation

fields are derived and details of the calculations are discussed.

13



In Chapter III, the structure of free space dyadic Green's function

is characterized in terms of solenoidal and irrotational components. A

* ,complete eigenfunction expansion for the free space dyadic Green's

function is obtained. This expansion is used in determining the dyadic

Green's function for a dielectric coated cylinder. Certain

orthogonality properties of the cylindrical vector wave functions [15]

are established in this chapter.

The dielectric coated cylinder problem is treated in Chapter IV.

Fields due to current sources at the dielectric-air interface can be

obtained in two ways. One approach relies on the technique used in

Chapter II. The other is based on the dyadic Green's function

determined in Chapter Il1. Use of these fields yields the impedance

matrix [Zi. The method of steepest descent is employed to derive an

expression for the far field of the currents on a patch.

The impedance expressions obtained in Chapter IV are basically

eigenfunction solutions which converge slowly as the radius of cylinder

*increases. In Chapter V, the Poisson summation formula is introduced to

convert the Green's dyadic function to an alternative representation

which is more rapidly converging. To illustrate this approach, a two

dimensional coupling problem is considered.

Concluding remarks are presented in Chapter VI, and various

analytical details are given in the appendices.

S ,14
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CHAPTER II

MICROSTRIP PATCHES ON A GROUNDED PLANAR DIELECTRIC SLAB

A. INTRODUCTION

This chapter deals with mutual coupling between microstrip patches

printed on a grounded dielectric slab. For the calculation of impedance

matrix and voltage vector elements, the electric field due to an

expansion patch mode is needed. A general solution to the field

equations pertaining to the microstrip patch on a grounded dielectric

slah is presented in Section B. The surface current on the patch is

introduced only through the boundary conditions; this simplifies the

calculation, which is performed in the Fourier transform domain. The

solution is essentially of the Green's function type even though the

Green's function is not constructed explicitly. It is exact in the

sense that both the dielectric slab and the ground plane are taken into

account rigorously. Thus surface waves and coupling to adjacent antenna

elements can be accurately determined. An efficient evaluation of the

Green's function is also discussed. A moment method solution for mutual

15
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coupling between rectangular microstrip antenna elements is treated in

Section C. In Section D, numerical results of mutual coupling for two

antenna geometries are presented. These results are compared with

measurements. Finally, in Section E a general expression for the far

field of a patch mode using the method of stationary phase is derived.

An ej t time dependence is assumed and suppressed throughout this

-,- chapter.

B. THEORY AND GENERAL SOLUTION

The geometry under consideration is shown in Figure 2.1. The

grounded dielectric slab is infinite in extent in the x,y directions

with uniform thickness t. A microstrip patch is printed on the slab at

the dielectric-air interface with current density Js. Since both

regions 1 and 2 are source free, an arbitrary field that satisfies

Maxwell's equations can be constructed from two scalar functions [16]:

-jmi which generates a TM field and *ei which generates a TE field, where

i = 1 for the region inside the dielectric, and i = 2 for the region

outside the dielectric. Both scalar functions *mi and *ei satisfy the

scalar wave equation:

I - -I
- 2 v2 I mi(r)

(7 + k) ~'i~ 0 (2.1)
"-'" " _ei (r )_ l

- k2  in region 1 (1 = 1)

" 2 r  o'-"where k. 2
we- k in region 2 (i = 2)

16



MICROSTRIPZ
PATCH

REGION 2: co

DIELECTRIC SLAB GROUND PLANE

Figure 2.1. Geometry of a microstrip patch printed on a grounded
dielectric slab.

* k is the free space propagation constant, and c
0 r is the relative

dielectric constant in region 1.

Upon multiplying *mi and eiby the unit vector z, one can

* construct the fields as (16]

Ei r) = x iir)) + x x (z4Jmi(r)) ,(2.2)

Ai( ) =vx(zi(F)) + V x(eiF)(2.3)

17



where eI = and e2 = o The explicit form of the field components

can be found in Appendix A.

Since the structure is infinite in the x-y plane, the four scalar

wave functions can be represented in terms of their 2-D Fourier

transforms (or 2-D plane wave expansions) as follows:

in region 1

1 (r)- = 1 ml(kx k y)coskz l(Z+t) e j (k x x+ky )
I, = fJ e X dk dk

L_el (r)_ 2 el (k xky)sink z1 (z+t)_ y

(2.4)
S

in region 2

.2m2 (r) ! (kx'ky exk -Jk r
ff~~~ - 25

': ::: _$e*2(r)_ 41 _ el (k.,k y)_dxk 25

where

2 2 21k kyRek >0 ink <0'''- / ro~ kx y zi k zi

2 2  2
k x kRe k 0 Im,'-.. z2 0 x y z2 ' z?

- A * (2.6)
k= xk + yk + zkx y z2

.0 and

r xx + yy + zz

i "- - . .. . . . .... ..- . -- -- . * * * *



It should be pointed out that using Equations (2.4,5) in (2.2,3) will

automatically satisfy:

a. the boundary condition at the conducting ground plane:

z x E 0 at z -t ; (2.7)

b. the radiation condition as r = Irl . ; and

c. the criterion for the integrals in (2.5) to converge as z + -,

To specify the fields uniquely, the boundary conditions at the

dielectric-air interface must be satisfied:

z x (E2 -E) = 0 at z =0 (2.8)

and

z(H2 H1' J s at z =0 .(2.9)

Without loss of generality, the current density is assumed to be Fourier

transformable and to have both x and y components. Hence, Js can be

written as

Js(X,y) = XJs(X,y) + yJ (X,y)
s sx sy

1 A j(kx x+k~Y
J1 x (k k) + YJ (k k )1e dkxdky ,

•x ( y s:./,y(?

,'l.q



Use of Equations (2.8) and (2.9) will determine completely the

spectral functions mi,ei(i=1,2). The algebraic details are carried

out in Appendix Ak. Only the field components are listed below:

region I (-- < x,y < , -t 4 z < 0)

Exl (r) =- ff  k _- m "[

x lY e y "oer ;m"

-J(kxx+k y)
e y sink (z+t)dk dk

jk k1
Eye(r)l ! -kx 'ei + or *m

-J(k x+k y)
xx

e Y sink Zl(Z+t)dk xdk , (2.12) I

(k2+k2) "kx+k "

-J x y Y)
x xy

E (r) T f f we @ e Y cosk z(z+t)dk dk ,":

(2.13)

20
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U Ijk kI
xzllr 2 IfH1(r) = - - wi *'el -k~

-j (k xx+k 9y)
e cosk Z1(z+t)dk dk (2.14)

Hy(r)=~f W4e kxmi

-j k x+kyy)

ZI x y

and k2+k (ztdk k , (2.15)

cU( 2 -jk y *p -u ~ i ..H ~ x ky) i1.0 e sink (z+t)dk dk ;(.6

region 2 (-.< x,y < -, 04z4-)

k k
x z2 ;m -j(kxx+k9y+kZz

E r) 2 If k , +4 e dk dkx2 47 e2 + mo21  x y

(2.17)

21



k k 2y kz zE2(r Y Zf4 2 ; m e kxk
0 .2x * 2W dk dk

(2.18)

x y ~~-j(k x+k~Yk?~kd

E 2 ( r ) 4~ 7r2w * 2 edkf
0~ 

9)

H r) kkk

4r 2  jye? K (2.20)

= cc y z2 +~ e ~ y~ Z) d

2 (r)~~ 
~~ z2;- 

wu 2k' 2

(2.21)

andj

0:: -j Yk+ ) -j(k x k 
71

______ 
ky k 2z)

H z 2 r) iA 2 f f" e 2 e Kk x k (2 .2 2 )
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,. ,. .t -i - -. - . - - --r . . -S wVJV wV o - . s X , . * - ,, 4VN -: - rw .vr wr .

where

|0

el (k 2+ky2)D [kJ 5s k Jsx] (2.23)

Wz Sink t
0 ZI

m2 = - (k2 xkB [k k (2.24)

je k
r z2

Vme  - (kzC k2 r + kJ5si kz sy (2.25)

k sink t

-'m2 2 2 [k + kJ (2.26)
(kx y m

and

Dm = k cosk t + jk sink t (.8rl rz2 Z1 zi, Z12.8

It should be pointed out that there are two dyadic Green's

functions Al and 92, associated with the grounded dielectric slab. il

corresponds to the case where the field points are inside the suhstrate

(region 1), and 2 corresponds to the case where the field points are

23
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-Toutside the substrate (region 2). Only six components of each dyadic

Green's function are considered since the surface current on a

" microstrip patch has no z-component. These components can be identified

from Equations (2.11) through (2.13), and (2.17) through (2.19) as

follows:

i J • jk.r'
G (r,r') = gl , (r,k k) e dk dk , (2.29)

CL ~o 'K xy X y

where

i = i,2

k =xk + yk
X y

= xx' + yy

r = xx + yy + zz

'-. x : x,y,z

? i-
• - B :x,y

and g are obtained from the electric field components which typically

have the following form:

7 .. 0-0

'- i -,kx  k ) ]d k d k
-C [g~(x k ' y sx x y ay xy sy xy xY

-T' Eai( r) = -S gixk k)ds(k ,ky) + grak ,ky),Js(k k•]kd

(2.30)

5 It follows from Equation (2.30) that the calculations of either

electric fields or mutual impedances will invariably involve the

numerical evaluation of an integral of the form:

24
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F(k k)
x yr =J DeD dkdk (2.31)

which, however, can be facilitated by changing to polar coordinates k,"

where

k = kcost (2.32)

k = ksin . (2.33)

Thus,

2, F(k,)-
r=f kdkj De) d. (2.34)

C o em

The contour Ck for the k integration is shown in Figure 2.2. The branch

cuts for the branch points k = ±ko are defined by the analytic

properties that

2 2
a) Im k = Im k - k < 0 on the entire top Riemann sheet;

z2 0

b) Re k > 0 in the first and third quadrants; and
z2

c) Re kz2 <C0 in the second and fourth quadrants.

However, k = -" r k are not branch points since the integrand is a
r 2 .

single-valued function of k = rk -k 2 , The branch cuts are also

shown in Figure 2.2.

25
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COMPLEX k PLANE

BRANCH CUTS

Rek

0 0O

SURFACE WAVE POLES

Figure 2.2. Proper contours of integration and branch cuts in the
* complex k plane.
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The denominator in the integrand of Equation (2.24) defines the

surface wave modes. These modes are determined by the roots of

D|

e = ( (for the TE waves) ,(2.35)

D 0 (for the TM waves) .(.6

Substituting a =k t/ T and a =t e k into Equations (2.35) and0 rro

(2.36) and rearranging terms yields, respectively,

22 ,j + acota =0 '(2.37)

2

r rnia a + atan toi .0 (2.38)

It can he demonstrated that if is real and e 1, the roots ofr r

Equations (2.37) and (2.38) are real and located inside the segemnt

k 0<k </ rk o. If N e N mrepresents the number of roots for the TE, TM

case, respectively, then it can be shown that

'. D = 0 ( for a < w/2
N=
e

n 0 for (n-1/2) < a < (n+1/2)(, n 1,2,3,....

and

N b t n+1 a for ni a < (n+l)ir, n nd0,1,2,....
m

27
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It is noted that the dominant TM mode has a zero cutoff frequency. For

lossy dielectric (Im Er - 0), the roots just move off the :eal k-axis

wiLh the form k = kr-jki, k. > 0. The exact root locations can be
r

determined by using the Newton-Rhapson procedure.

For efficient numerical evaluation of the integral in Equation

(2.34), the new contour C. is adopted by deforming Ck (as shown in

Figure 2.2). The integration along C. is performed by computing the

Cauchy value of the integrals around the surface wave poles. Assuming

the surface wave poles constitute an ordered set as {p. =1,2,...,n},

Equation (2.34) can he written as

I-PlI- P~i Pni - 21 F(k, )
-im + + + + n kdk f -D 0 d

S+o+ _ o pl+6 Pn_1+6 Pn+5 o 0 m

n 27r
" JI )j f d Residue D D (2.39)

X=I oI_ e m _Ik=p

In the case of lossy dielectric, the integrations from P -6 to

PZ +6, 9:l,2,3,...,n, can be evaluated analytically without indenting

the contour C This is done by using two terms of a Taylor series

expansion of D D about p , and by taking the value of the numerator
em

F(k,4) at k=p throughout the interval.

In actual numerical evaluation of (2.39), 6 0.001/ko, and the

infinite integral is terminated at k 150 ko .
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C. MUTUAL COUPLING ANALYSIS

In this section, the moment method solution for coupled microstrip

antennas is described. Without loss of generality, an array of M

arbitrarily oriented rectangular microstrip antenna patches on a

* grounded dielectric slab is considered. When patch q is excited by a

vertical filament of constant current density J9 (a rough approximation
-q

to a coaxial or microstrip line feed), an incident field Ei is radiated.

Let the sum of the surface currents induced on each of the patches by Jqj

be denoted as Jq; this 3q radiates to produce the scattered field Eq
5'S 5

On the surface of the patches, the total tangential electric field

vanishes so that

T " ( -q +  E- d sq

S0 1 (2.41)
S

where JT is an arbitrary non-zero test current (usually called the test

mode) located on the surface S of the microstrip patches (where J

exists). Denoting the electric field due to JT by ET, and applying

O the reciprocity theorem to the pair of fields (E ; ET) and sources (Jq.

JT ) yields

f 11 T• ds f E T iq ds
S S

Applying the reciprocity theorem once again to the pair of fields

(qi' ET) and sources (J.; ,J) yieldsT i T

f JT * Eq ds fET " dv
S V

2q

'
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It then follows from the above reciprocity relations and Equation (2.41)

that

S ET • Jq ds • . (2.42)

S s V T i

The next step in the moment method solution is to expand J in

terms of known basis functions from a finite ordered set

- = {Jn= xJ; + YJa :n = 1,...,N ,=a 1,2,...,M, N + N2 +..+ NM = N}.n nx fly 1

Thus

M N~d q Ia(q) c (2o43)
os~ n n .,
a=1 n=1

where Jn known as an expansion dipole mode, is the current density of

mode n on patch a, and In(q) is its unknown current amplitude. In the

Galerkin scheme JT is chosen to be an element J e'3 which excites them

electric field Em. Hence, inserting Equation (2.43) into (2.42) for all

m and a yields

M N -sIn(q z =n vm (q) (2.44

a=1 n=1

where m a 1,2,...,N8, 8 : 1,2,...,M, No : N, and
8

Zmn E r mn +n) J (ra )ds (2.45)

vr q) f E M( )  ° i rm)dV (2.46)
V

where

30
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wz. j

rmn = (Xmn,ymn,O) is the displacement vector from the center of
mode m on patch B to the center of mode n on
patch a, and

-B 13 1
m = (xm'YmZ) is the postion vector referenced to the center ofmode m on patch 0.

U

In Equation (2.46), the excitation 39 at port q is modeled as

, qr ) = zli9(x-xmf)q(y-ymf), - < x,y < -, -t < z 0 0, where

(xmfymf,0) is the displacement vector from the center of mode m on

patch B to the feed location on patch q.

The geometry of modes m and n pertaining to the evaluation of

Zmn and vm(q) is depicted in Figure 2.3. In terms of matrix notations,

* (2.44) can be written as

[Z][I(q)] = EV(q)] (2.47)

whereL th
column block

~I~jI

SBa Ba

I.I

z all • . $. a
11 O&N -

e
[Z] -- J t h row block

$ $

I l (2.48)
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(q(q)] = 1 N 1(q) ... I ' (q) I1 (q)...IM(q)] ,T

(2.49)

[ [V(q)] = [v1(q)...v (q) ... Ivol(q)... v (q) ... (q)]

(2.50)

In Equations (2.49) and (2.50), T denotes taking the transpose of the

row vector. Thus, the current amplitudes [I(q)] can be solved

algebraically by matrix inversion:

[I(q)1 : [Z]I [V(q)] . (2.51)

As indicated in Equation (2.51), the current amplitudes will depend on

UI the feed location on patch q.

According to Equation (1.14), the input impedance at port q is

given by

M Na a
I I c(q)Vnx(q) .

a=l n=l n

qq -q)2 (2.52)

Similarly, it follows from Equation (1.16) that the mutual impedance

between port q and port r is given by

M Na

I XI(q)va'(r)a=1 n=1

Zr r (2.53)

Ii3 I3
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q r
In Equations (2.52) and (2.53), it is understood that Ii and I.i are the

terminal currents at port q and port r, respectively; the Ia(q) are

* obtained from (Z.51); vo'(q) and v"Nr) are the voltages at port q andn n

port r, respectively, due to mode n on patch a excited by source J9when

all other ports are open circuited.

To compute the moment method solution for mutual coupling between

microstrip patch antennas, one needs to evaluate Equations (2.45) and

(2.46). As presented in Appendix B, the exact expressions for z nand

va(q) are given bym

I k k

z 12ff (k 4 + d ) COZmn 4~ ye2 +~ WE 0 o

k x kz2 8

(k m sin anxe2 WE "m) On nx'

k kk
x xz2 kkZP

(ky4~ + W%~r2) sin mn + (k x8 z 2 ) -o nix e2 W: e2 we0  4)cS

-j(k x +k y )
xm dk (2.54)

x y

2 2
j9 (k +k q s q)

v (q)-8 e ~x mf y~mf sink t dk dkI. vm 9 4 T2 Lf weoerkzi 4 mezi. x y

(2.55)
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a ~~- - - --- ~ -. - -- - - 11

where]

r z2 -
I'm 2 2s + +k S' (2.56

(k +ik 2)D x mx y MY

wv sink Zt

2k 2 kJ -kJ (2570 (k 2+k 2)D xMY y mx (.7

k1 sink ZIt

422(J + kJ )(2.58)' 2 (k 2+k2)D kx mx y MY

=y
8  x Bj(k x+kY) xd ,(2 )
fm 1 ij (x,y)e x d y

mx mx (.q

~m ~m

= y x j(k x+k~yM m *is J8 (xyemy (x~ my dxdy (2.60)

MYa MY
YM x

a y x

-yn -X

-j[x'(k cos +ik sin + y'(-k slnt +k cos )
ex mm y mn x mn y n dldyl

M?61)
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~7"7
i oi ci

"Yn -xn

-JIx'(kxcosim+kysinmn) + y'(-k sii +ky ] y'
m n y m n m n m n d x ' d y '

(2.62)

mn is the angle between the x-axis of mode m and the x'-axis of mode n

(see Figure 2.3); 2x and 2y8 are the widths of mode m on patch 8 in the2yrrete ithm-

x and y directions, respectively, and likewise, 2xn, 2y are the widths

of mode n on patch a in the x',y' directions.

D. NUMERICAL EXAMPLES

Calculation of mutual coupling (S12 parameter) between two

identical coax-fed rectangular microstrip antennas is presented in

this section. Two antenna geometries (E-plane and H-plane coupling) are

considered. In both examples, the expansion set is chosen to be

=XJ= n=1, a=1,2, N1=N2=1 }
ji n nx N2= 1(2.63)nix

where

lsinc(x'Ixl )

J2 (x,y) = y'si 1
1x

0 , otherwise . (2.64)

In Equation (2.64), the coordinates x, y are referenced to the center of

the expansion dipole mode of length 2x (along the direction of the

current) and width 2y'. Furthermore, __
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.c Oeq (2.65)

e + --11/2
r r lot I

e co 2 + 2 ( 2y) (2.66)
II

The choice of dipole mode currents J1 and constant K is suggested by*1
* [17]. It should be remarked that a current expansion mode in the set 2

is employed to approximate the even (dominant) current mode (Figure

2.4(a)) on a isolated microstrip patch at its first resonance. As

indicated in Equation (2.64), such an expansion mode is uniform in the

y-direction and piecewise sinusoidal in the x-direction. It is

1: understood, nevertheless, that at least one odd (attachment) mode

(Figure 2.4(b)) also exists simultaneously at resonance to account for

the discontinuity in current due to the feed. Summing the even and odd

modes will reasonably represent the true current distribution on the

patch (Figure 2.4(c)). For the sake of simplicity, however, only the

even dominant mode is considered in the calculations with the

understanding that at resonance only the even mode will dominate and

closely resemble the true current distribution.

Since x 1 = X2 1=2 (identical patches), and J1 1 2 =0,1 x1, Y1  y1  J 1y

Equations (2.54) and (2.55) reduce to, respectively,

a-k k
j x z2

z - f + (ky 2 co4 111 = 4iy*e2 +  we. 0 m2)COS

k k
-5 x z2 - . -

~'e2 we0  *m2)s~i

'x' e dkxdky , a,B=1,2 , (2.67)
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0j FEED X

ACURRENT

(a) EVEN (DOMINANT) (bODD (ATTACHMENT) (C) TRUE CURRENT
MODE MODE

Figure 2.4. Current distribution on an isolated iicrostrip patch at
resonance.

x z2lIx -j~k
kkx~+/esn t dk dkv (cI) 4f sknk e1 x y

where

~e2=k (2.69)(k +k2) ~i

k sink t
z I z I

~'rk 2J 3 (2.70)
(k +k)D xi

Jix I il (x,y) e kxk 9 dxdy

1 xl)(2.71)
2K(cosk x x1 - cosKX sink Y1I

sin~x~ (2 ) *y 1 ,8,

is 38



2 2
-a y x

l'= 22(xy) 

e-j[X(kxcstll+ky Sin11) + Y(-kxsin 11+kyCos11)]dxdyU'.'
. =~c=1,2 ,''

(2.72)

$a B a $at $a a
(Xlf, ylf) = (Xll, yll) + (Xlf, ylf) , c,8=l,2 . (2.73)

It should be noted that (xlf , ylf ) is determined from Equation (2.68) by

enforcing the condition that va(a)/Ia is a real quantity. This

corresponds to the condition that the isolated microstrip antenna is at

resonance.

Example 1: E-plane coupling

The antenna geometry is shown in Figure 2.5. In this special case,

1 2= xI = 3.275 cm

~1 2 ;
Yl Yl = 5.285 cm

11 22 .X1f Xf - 1.115 cm

Xif if

y y 22  0 cm

=

S= 0 ,=,2

frequency = 1417 MHz

t = 0.1575 cm, and

C 2.5
k r

3q,-

. . ...... ..

,, ,, ,- , ' - " ' _ - ' r ' 2 .'. . .. . . . -. . . . ..- . . . . . . . . . . .....,, .,., ... L._ t,,., ,.W i J, J .,d



-10

10.57 c

t *0.1575cm

<f 1417 M Hz

-20 x0 m 21.17 cm
x

ty x

-25 x

-30 COMPUTED
x x x MEASURED

-.35
90 0.5 1.0 1.5

( 0)

[SFigure 2.5. E-plane coupling for identical microstrips.
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It can be deduced from Equation (2.72) that J ix' i =1,2. Also,

(2.73) implies that Y Of 0, a,0=1,2. Thus Equations (2.67) and (2.68)

reduce to

0 jk k1

z 11 4w2k _f Oxx(kx ky)J x J x  e dkxd ky  ,  a,0=l,2 ,
y--l( (2 .74 )

i 0 x z2 -jkxxlf
v (a) 2-_ sink t J 1x e dk dky ,  a ,=1,2

(2.75)

where

sinkzt 2 2 2 2

Oxx (kx k ) D m {k z2 ( rk -k )cosk z t + jkZ 1(k k )sinkZ1 t ,

* (2.76)

n= (2.77)

As mentioned earlier, the infinite kx, ky integrations can b

facilitated by converting to polar coordinates k and a defined by

S2 2

k = x + k (2.78)

a tan -(k y/k ) (2.79)
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*

Also, the even and odd properties of the integrands can be used to

reduce the domain of the a integration from [0,2n] to [O,n/2].

Equations (2.74) and (2.75) can then be written as .,

aa 000on/2-a?
Z : 2k f f Q (k,a)J 3 cosk x1 1 kdodk ,a,=1,22oo ~ o X lx lx x 1

(2.80)

jI~r ~ k k
io 1 ./2 xkz2V f fsink t sink x 8 - kdadk ,a,a=1,2

'1' 0 0~ k Z1 m zi x if 1x
Q v ( ) = 2ko o o kzlim z ~~fl

(2.81)

Equations (2.80) and (2.81) are the final forms used for computing the

impedance matrix and voltage vector elements.

Example 2: H-plane coupling

Figure 2.6 shows an antenna configuration for studying the H-plane

coupling. In this case,

1 2
x = x = 3.275 cm

1 2
Yl= Y, 5.285 cm

*-' x11  22  1
i Xf i if 1.115 cm

11 ?2Ylf =  -f, 0 cm,'
Yif Yif =c
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x 0 ,6=,

frequency =1417 MHz

t 0.1575 cm, and

r 2.5

As noted in Example 1, jc j Q c=1,2. Moreover, it follows from

*Equation (2.73) that (x $a . 8a (xa' y" .a0=,.ThnEuainif' i~f i Xf. 11),c,= . Te qain
(2.67) and (2.68) can be simplified to

zc B 8-a 1
-
9  Q (k ,k )J i dk xdky CL,0=1,2

4,,ko -COxx x y 1Xi1X y

(2.82)

no CO k k: ~ 'lxCla $a
___ Z -~ kx +k.Y)

1 O fYi)sn dkxdky

(2.83)

.4 Introducing polar coordinates k and a in Equations (2.82) and (?.83) to

obtain
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i n
B 0 -ea/2

11, i2k f f Q (k,a)J J cosk kd adk ,B=
0 0 xx 1x 1x y"11

(2.94)

jI1'r k k
S.no ir/2 xz2 -"

= 7r 2 Jxsink t sinkxXlfcoskyY11 kdodk
va) 2ko f f kzDm ix Zlti yi

0 0 Z1im

a,0=1,2

(2.95)

From Figures 2.5 and 2.6, one can observe that the E-plane coupling

is larger than the H-plane coupling. This is due to a stronger surface

wave which is excited for the E-plane configuration. In general, the

magnitude of the scattering parameter s12 is seen to have good agreement

with measurements by Jedlicka, et al. [181. For the data, the isolated

microstrips were resonant with 50-, resistance. This occured at

" 1417 MHz for the computations, and at 1410 MHz for the measurements. It

is noted that the percentage tolerance on the substrate permittivity and

patch size are of the same order of magnitude as the antenna bandwidth

(typically a few percent). Such an error causes a shift in resonant

frequency, but it is found that the change in the calculated terminal

impedance is negligible.
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E. FAR ZONE RADIATION FIELD)

The radiation field refers to the electric field in region 2 when

the field point is significantly removed from the source. From

Equations (2.17) to (2.19), it can be shown that the electric field may

be expressed by the 2-0) Fourier transform as follows:

E (r) = y ff E (k ,k )e dk dk ,(2.86)2 -T2Xy x y

where

k xk +yk+ zk k k k-k -k ,Re k 0, Im kx y z2' z2 o x y z2 z2

r ;x +y^y + z^z - < x,y < 0 z < a (region 2),-

E?(k ,k ) (k k + yE (k k + zE(k ,k)
xy Xx 2(kx 9y y2(k y z2 x y

2 2
X2 gxx (kx9k y )Jsx +gxy (kx ky )isy

2E y2 =gyx(k x ~ky )J s + g yy (k x k y j sy

2 (k ,k )J + g 2y(k ,k )J

z2 gxXy sx zy xy sy
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j 0 si nk Z1t

xx (k ,k) kofleDm

[(erk k )k z2cask Z1 + j(k 0k )k1sinkZt]

0 in k sink Z1t
2 0 ~ Z

9 (k k ~~~ k .cos ksn(k x yk koDeom ask Z1tj Z1s Z1

in sink t
20 zi1

( yk k) y kaDeDm

[(Crko ky)k z2 csk Z1t + i(k 0 k y)k Z1sinkZI tI

2 g2
(k k(k k)

ksink t
2 0Oy Z1

9 (kx~k~)= D
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22 -Jk sink 1t
g (k ,kzy x y De

I) k cosk t + jk sink te Z1 Z1 z2 Z1

I) e e rk z2cosk Z1t + jk Z1sink Z1t

Since 17 E E2(r) =0 in region 2, the divergence of Equation (2.86)

gives

7. E 2e =E 2 ye =-jk *E 2e =0 (2.87)

Thus only two components of E 2 are independent. Then E 2 can be

expressed by

E 2  x 2 + yEy2  z z (k XE 2 + k yEy2) .(2.88)

As shown in Appendix C, the integral in Equation (2.86) can be

evaluated asymptotically by the method of stationary phase as r-..

6 Using Equation (2.88) and (C.15) in (2.86) yields the far zone radiation

* field as follows:
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-jko r
e

E E(F)~j 2, r kcosS [X x2(k xk y) + yE y2(k xk y)

kz 'x X2 x 2 x y 2 x y2 1(xy(

y y 0y-xOoy
r,+ ,.(.89

e
E(r) - zk 2n {x[cos E(k,k ) - sint E 2(kxo,k o)]Cos

kz x2(kko + sink y2'y) = (kx .90y)

Once the current density J aon the microstrip antenna is determined, the

I.i
"rd I n fe ld .. sperotai ne c om Equation (2.90). e e
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CHAPTER III

DYADIC GREEN'S FUNCTIONS

A. INTRODUCTION

For many electromagnetic problems, the eigenfunction expansion

0method provides the most useful solution to the (electric or magnetic)

field; the boundary conditions of the problem are readily incorporated

into the solution. For waveguides and cavities, in particular, the

elgenfunction expansion method is usually the preferable way to solve

problems involving current sources and wave scattering. The whole

procedure for finding the elgenfunction expansion of the electric field

can be organized in a systematic way by introducing the electric dyadic

- Green's function or simply Green's dyadic (Ge) which is discussed in

this chapter.

The elgenfunction expansion of ie had been a subject of

misconception and controversy in the past. The difficulty centered

about the completeness of the expansion. Initially, Tai developed

expansions for the dyadic Green's functions in his book [19] which
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i included only the M and N functions which are the solenoidal

(transverse) Hansen vector wave functions. After the publication of his

book, Tai noted that his expansions were incomplete in the source region

and discovered the need for the irrotational (longitudinal) Hansen

vector wave function L. In his subsequent amendments [20,21], Tai

indicated how the complete expansions of the dyadic Green's functions

could be obtained via the method of Gm, where Gm is the magnetic dyadic

Green's function with zero divergence and may be constructed in terms of

only the solenoidal elgenfunctions. Ge is then obtained from V x G,

together with a dyadic delta function term at the source point. Thus,

he avoided having to deal with the L functions explicitly. About the

same time, Collin [22] discovered independently the lack of completeness

for the E and H modes in the same waveguide problem considered by Tai.

Later, Rahmat-Samii [23] modified Tai's method of Gm via the use of

symbolic functions (distributions). More recently, Collin (24]

successfully unified the various results on the dyadic Green's functions

as presented by different authors. Various representations for the

Green's dyadic were presented and their inter-relationships pointed out.

Most recently, Pathak [25] described a relatively simple method for

constructing a complete expansion of Ge in a compact and useful form

which contains only the solenoidal type etgenfunctions plus an explicit

dyadic delta function term that accounts for completeness at the source

point.
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A main feature of this chapter is on the eigenfunction expansion of

Ge in free space. The present approach follows that of [25] in

obtaining the source conditions that govern the Green's dyadic in free

space. It then conjectures that the free space Green's dyadic can be

expressed as the sum of a solenoidal component and an irrotational

component which is allowed to be a symbolic function. The solenoidal

component, as usual, is expanded in terms of the ; and N functions; and

the irrotational component is deduced from the differential equation

governing Ge- Of course, the irrotational component turns out to be in

the form of a dyadic delta function as in [20,211 and [25]. Making use

9 of the free space Green's dyadic and the principle of scattering

superposition, the dyadic Green's function for an infinite dielectric

coated conducting cylinder can be determined without additional

* analytical difficulty. t

The remainder of this chapter is organized as follows. Section B

* reviews some basic relations governing the electric field (E), the

magnetic field (H), Ge and Gm. Only E and Ge, however, will be used

in the chapters that follow. The free space Green's dyadic is

characterized and expanded in Section C which also establishes the

orthogonality of the ; and N functions in cylindrical coordinates. In

Section D, the Green's dyadic for a dielectric coated cylinder is

constructed. Finally, Section E expands the Green's dyadic into

component form from which the electric field is easily identified when

the source is known.
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In the remaining portion of this report, all time-harmonic

quantities are assumed to have an e-Jwt time dependence which will be

suppressed throughout.

B. SOME BASIC RELATIONS GOVERNING E, H, Ge AND Gm

The electromagnetic fields E and H excited by the electric current

source ,1 in a region V of linear, isotropic and time-invariant medium

:i satisfy the Maxwell's equations:

jwuH(F) =7 x E(F) , (3.1)

k2E(F) -j.= 7 x H(F) - J(F)) . (3.2)

V H(F) = 0 , (3.3)

and

p(F) j -11,. V • E(F) - :-v k j(-Jr))(.4""

where r c V, u and e denote the constitutive parameters of region V;

k2  w2 pe; and p is the charge density associated with J. One can

verify from Equations (3.1) and (3.2) that E and H satisfy the following

differential equations, respectively:
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Vx Vx E(r) -k2E(F) =jwIAJ(F) ,(3.5)

and

V x V xH(r) -k2H(r) =Vx J(F) .(3.6)

The electric Green's dyadic Ge for region V is defined as the

solution of the vector wave equation:

V xV xG (r,r') k2G(r,r') I(-r') ,(3.7)e e

and the boundary conditions pertaining to V, where r,r' e V denote,

respectively, the field observation and the point source locations; I is

the unit dyad; and 6(r-r') is the Dirac delta function. It can be

proved that, for region V, there exists another dyadic function known as

the magnetic Green's dyadic, denoted by Gm, which satisfies the -

* differential equation:

2d xG~, kG(r,r') =V x 76(F-r') (3.8)

together with the associated boundary conditions, and is related to Ge

* as

G ( r)=Vx G ~ )(3.9)m e
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From Equations (3.7) and (3.9) It can be readily verified thatI

k2Ge(rr') = V x Gm(r,r') - (r-r5) (3.10)

* It is also clear from (3.9) and (3.10) that

-- rr 0 (3.11)

and

V Ge(rr') = -v • 6( ' ')/k2] = " V6(r-r')/k2  (3.12)

r2
Comparing Equations (3.1) - (3.4) with (3.9) - (3.12), it is seen that

Ge, %1/jwp and I6(r-r')/jwp represent the dyadic analogs of E, H and J,

respectively. It may be noted that relations (3.9) and (3.10) must be

modified should r and r' be located in different regions each with

distinct permeability, This will be discussed further in Section D.

It is of interest to consider that E and Ge are solutions in region

v to the differential Equations (3.5) and (3.7), respectively,

pertaining to the geometry depicted in Figure 3.1. Thus E and Ge must

satisfy the following boundary conditions:

on the perfect conducting surface S,

n xE() 0  (3.13)

ii

55

L_



7 A
NUr

. Figure 3.1. Region V, bounded by a perfect conducting surface S and

a surface S. at infinity, contains an electric source J.
V can be inhomogeneous.

on the surface S. at infinity,

Xim r -x E(F) jkrxE(F) 0 (3.15) -,

r

lim r G e(r,r') -k x G r~r,) 0= 3.6

The latter set of conditions is commonly known as the radiation

condition. The region V, bounded by surfaces S and S., contains the

source J and can be inhomogeneous. Next employing the Green's theorem

for the pair E and Ge over V, and enforcing the appropriate boundary

conditions on E and Ge yield
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E(r) =jwp f G eU-rr*) *J(F")dv", r,F" e V .(3.17)

V

From (3.1) and (3.9), it can be verified that

Hm(r) f ~) J(F"')dv", rF c V .(.8

In particular, if J(r') is an arbitrarily oriented electric point source

of strength Pe located at r'=r', i.e.,

=~" 5e 6( (3.19)

then (3.17) and (3.18) will reduce to

*E(r) = jwp G (r ) I e (3.20)

and

H(r) =Gn(~) m (3.21)
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C. EIGENFUNCTION EXPANSION OF THE FREE SPACE GREEN'S DYADIC

The analysis of mutual coupling between microstrip patch antennas

involves only the electric field and electric current. It is sufficient

to consider the electric Green's dyadic (Ge(r,r')) because, as observed :7

in the previous section, Ge(r,r') is directly related to the electric

field due to an electric current point source. The mangetic Green's

dyadic Gm(r,r')), if needed, can be obtained by taking the curl of

Ge(r,r').

This section is devoted to the eigenfunction expansion of the free

space Greeen's dyadic which will be denoted by G (,,'). Without loss

of generality, it is assumed that the electromagnetic problem under

consideration can be formulated in a general orthogonal curvilinear

coordinate system (ul, u2, u3) with corresponding metric parameters,

s h1 , 2, h3, and associated unit vectors u1 , u2, u3 (Figure 3.2). This

requires that the scalar wave equation is separable in this system.

For the sake of being specific, it is assumed that coordinate uI

satisfies the following two criteria:

C.1. Any set S = {(Ul,U 2 ,U3): uI - po, po fixed, u2 ,u3 arbitrary}

forms a closed surface, i.e., surface S partitions the space

into two distinct regions, V+ ={(Ul,UU 3 ): Ul>Po,

u2,u3 arbitrary} and V- - I(ul,U2,U3): ul<po, u2 ,u3 arbitrary}.
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9°

U3 Ch3 )

53

lop-

U0U G2

Figure 3.2. A general orthogonal curvilinear system with coordinates

u1 , U2 , u3 and their corresponding unit vectors uu u3

m and metric parameters hj, h2, h3 .

C.2. The ul-propagating solutions of the scalar wave equation can be

obtained so that the construction of the ul-propagating vector

solenoidal etgenmodes or wave functions, denoted by Mq and Nq,.

is possible.

It should be remarked that at any point on S, the outward unit vector 0

normal to S coincides with ul. Also, the shorthand notation q stands

for a particular combination of various mode characteristics such as

evenness, oddness and order.
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It is of significance to consider an arbitarily oriented paint .
source J of strength Pe' located at r'=(u,, u 20 u 3  radiating in free

*space Va. According to criterion C.1, V0 is partitioned into two

distinct regions (Figure 3.3): .

Vu 2= u1  u 3): u 1 u1 u21 3 arbitrary}

and

V- (u1,u2,u u): arbltrary} :
The interface between V+ and V- farms a closed surface defined by

S = =(u 1,u29u3  u =U19 uu 3 arbitrary}

which contains the source represented by

-6 u-)8(u2-u )6(u3-u)

J(r) ~e (-) e h hh (3.22)

From (3.12) it is clear that

2-

V (~) -v6(r-r')/ko r c S

0 * cV r~+ (3.23)

2

where ko = w2 i'oc, and Pc,, co are the constitutive parameters of free

space V0o. Equation (3.23) simply says that G0(F,F') is solenoidal

L in both V+and V-, but irrotational on S. Thus one can conjecture that
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POINT SOURCE 1()= 8 1 -f 1

-9 %.- I/

• /

FREE SPACE 
a

Vo :v-uv-us/ ° /

REGION V- / REGION V: U1 > U
I ui~u If

\ /

SURFACE S : u -u0

Figure 3.3. Free space Vo is partitioned into regions V
+ and V with

closed surface S as Interface which contains the point

source 5 at - (Ul.U 2 ,u 3 ).
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G0(r~~~r) ~ U(ul-ul)g,(r,r') + U(ul-ul)g0(o ' -*rr

(3.24)

where

go( r( 0 ' for r£V,(3.25)

gor.. GO(r r') for r e V (3.26)

UM~ (unit step function)

-0 ,<O0

and *(,)is a dyadic symbolic function (distribution) which is used

as if it was an ordinary function with the understanding that it will

produce valid results under the integral sign (in the present case, the

volume Integral over a subset of V0).

It should be recognized that, by definitions, g 0and g 0 are

solenoidal (divergenceless) in V~ and V, respectively, while is

irrotatlonal on S. Mathematically these mean

g= rr) 0 for r e V (3.27)

and

Ve~FF 0 for cS *(3.28)
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UIt may be mentioned that (3.28) implies v4is non-zero in the sense of
distributions. In addition, itsatisfies the homogeneous vector wave

equation:

VxV~( ~ k' g k (r,r') =0 r£V (3.29)

and the radiation condition:

Lim r[Vx !(r,r') - Jk rx; (r,r')I 0 (.0
r 0 0 0(.0

Now from (3.20) and (3.21), it is seen that the electromagnetic

fields apart from the surface S can be defined as

E ) jWU 0 g(r re) Pe ,r eV (3.31)

H () V x g (r~r') P p r e V .(3.32)0 e

*Since the tangential electric field is continuous at S, it requires that

u x [E (r) -E(r)] hi

or

+ a- 8(ul-ul)
UiX [g0(r~r') -go(r,r')] -hi 0 .(3.33)
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Equation (3.33) is obtained by using (3.31) and the fact that -e is

arbitrary. Likewise, by enforcing the boundary condition on the

magnetic field at the interface S one gets

x [H~) - ~r)I6(uj-u;) t ()U 0

(3.34) -

where tdenotes the transverse part of the unit dyad with respect to

the propagation direction ti1 , and is defined by

t + U 1 Il 't u2u2 +u 3u3  (.5

Employing (3.32) in (3.34) and the fact that Pe is arbitrary lead to

* g~=+' 6(u1-u1) --

xi [ x g 0(r,r') x- V~ xi 1t (r-r') . (3.36)

Equations (3.33) and (3.36) constitute the boundary conditions on

Go~rr')at the surface S.

Next the irrotational component 4will be determined by enforcing

G0(r,r') to satisfy the inhomogeneous vector wave equation described in

(3.11) (with k rpae by k Taking the curl of G0in (3.24) gives

Vx G0(~ U uu)7 x go(r,r') + U(uj-uj)V x 90(r,r')

=+6(ui-ui) =--6(u 1-u1)
+ i X -9 -rr' 90 xrr) *(r,r') h

(3.37)



The third term on the R.H.S. of (3.37) vanishes because of (3.33) and it

is permissible to choose *such that

h £ (3.38)

since up to this point *is still arbitrary other than the requirement

that V-ji * 0 on S. It may be noted that ( r) h Is

symbolic function, hence (3.38) means its curl vanishes on S in the

sense of distributions. Consequently, one will find (3.37) reduces to

V x GO(r,r') =U(u 1-u 1)v x g 0(rr') + U(u 1-u1 )V x g 0(r~r')

(3.39)

Taking curl of both sides of (3.39) yields

vxvxG0(r,r') =U(u 1-ul)vxvxgo(r,r') + U(ul-ul)vxvx;0(r,r')

Z+ -- - (uj-u1)
+ ulx[vxg 0(r,r') -Vxg 0(r,r')] hi (3.40)

From (3.29) and (3.36) it can be verified that (3.40) will become

= - 2 Z+i- uju1VxvxG0(r,r') =ko[U(ul-ul)g0(r~r')+U(ul-ul)g 0(r,r') - *j (r)]
0

+ I8~F).(3.41)
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Comparing (3.24) and (3.41) suggests that choosing

6(u -U)5(u-u;)
( h2 U1U1  (3.42)

0 2 3

will make

="- = - -' - U-~ '-(-

G(rr' U(Ul-Ul)go(r,r') + U(ul-ul)go(r,r') - -
0

(3.43)

a valid representation of the free space Green's dyadic provided

conditions (3.23), (3.28) and (3.38) are satisfied. To verify these

conditions one may integrate V. over region V-US and then apply the

Gauss' theorem:

U1
f V.;(FF')dv = f j(F,F')uIh2h3du2du3  kz (3.44)
V-Us S0

- Equation (3.44) indicates that V.4(r,r') does not vanish on S.

6(u1-u1)
Likewise, integrating V x [*(rr') h1  ] over region V US and

applying Stokes' theorem show

[(Ul-U15 ,r U- ]h2h3du2du3 .-S x[*(r,r') -h dv -f Ul x [;(r,r') h hd

V-US S

A 1A - -

= f u1 x [-W- 6(r-r')] h2h3du2du3  = 0 . (3.45)

I -
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- - j % - - *- .~. 9

6(ul-ui)
UEquation (3.45) implies that V x [- h1  ] indeed vanishes on S.

=

Thus the validity of the representation of GO by (3.43) has been

established. Moreover, this representation proves to be most useful and

*compact for the elgenfunction expansion of Go which is considered next.

Anticipating the Go will be needed in the construction of the

Green's dyadic for a dielectric-coated circular cylinder, one would look
=

for the elgenfunction expansion of Go in cylindrical coordinates (p,*,z)

which are natural for cylindrical structures. To do so, one of the

coordinates p, f, z must be designated as the "ul coordinate" that

satisfies the criteria C.1 and C.2 stated earlier.

It is relatively easy to verify that

1. the set

S = {r=(p, ,z):p=p', p' fixed, 04<2w, -a<z<-} forms

an infinite circular closed surface that divides the entire

(free) space into two distinct regions denoted by

V+ = {r = (p,,,z): p>p', 042iw, -- <z<c} and

v-= {r-=(p,,z): p<p', ;4 42w,

2. the "p-propagating" solenoidal vector elgenmodes or

wave functions which satisfy the homogeneous vector wave

equation are found be [15,19)
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M + ± 1  sinm a + Cos jh'z
Memx,(h',r) p --- ,P ) s m

- (3.46)

Nemx-(h',r) Vo V x MemXm(h',r)
0 0

jhIa I4'.± cos jh'm + sin
= 0  ap m-(X0)sn~ - M * kop Zm(X P){cosm

+ .m},eh'z
M sin'Oe(.7

where

m 0,1,2 ...; -<h'<c*; V' = 0 h' with ImX' > 0

I(1) th
H (A'p), an m order Hankel function of them

m first kind
ZW m WO an m thorder Bessel function;

and e,o refers to even, odd mode, respectively.

*Evidently, it is permissible to assign

21 , 3 ) =(P, ,Z)

and, correspondingly, the metric parameters are given by

(10h21h3) =("1,l)
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To be more specific, it is assumed that an arbitrary electric point

source of strength Pe is located at r' - (p',f',zl) e S, and the

observation point is at r = (p,f,z) e V+ or V. Then, according to

Equation (3.43), Go has the specific form below:

= pp

G(r,F') U(p-p) (r,r') + U(P'-P)g (r,r') " 6(r-)
0 0 0 0

(3.48)

It follows that the resulting electric field is given by

E+(r) ="iwuogo(r r') P po e r e V - (3.49)
- -_ --.. .±

Since E (F) or o(r'r')'p e is solenoidal for r e V-, they can be

expanded in terms of the solenoidal eigenmodes as follows:

'- - I- 'i.
+ rq(h',r') ITq(h',r ) +

go(r~r')pe= f dh' m. Mqx,(h'ir) + N qX.(h',F)
.- m:0 Cq(h,r') (h .ri

- -. _ - (3.50)

where rq9 Tq, Cq and Dq denote the expansion coefficients; q is a

shorhand notation for e and
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Cqhr) q .(h',r) =Cem(h',r')MexW 'r
0 0

~C em (h' ,r')Mem (h'.r) + C ,m('r)oX('r m>0

* - em hr)MmXm(h',r) M=O (3.51)

It may be noted that (3.51) will also hold if MaqX(h',r) is replaced by

- qXm(h',r) since both Momx,(h',r) and Nox('r are zero for m=0.

The determination of the expansion coefficients in (3.50) requires

*a set of orthogonal properties of the vector wave functions which are

stated in the form of lemmas below. The proofs of these lemmas can be

found in Appendix D.

Lemma 1.

fdh' f dz f 21 [An x MenXhr]* Mgme(h')

-CO 0 0 0 0m ~ X

Sn S
C A en rem X2 Zn (XP) m (XP) 6mn *

n 0 0

Lemma 2.

M C 2i 7r
f dh' f dz: f Pd [Ae pn x eX(hr-)]'[rem NeSm X(h',F)]

- 0 0 0 0 0

£ Aen re PX2 -p Z n (p)Z m(XP) 6 mcn o om pn mm
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pLemma 3.

2n -Sn -Sm
fdh' f dz f pd [Aen P x V x MenX(h,r)].[rem Nemx'(h',r)] 0
-W - CO 0 0 0 0 0

Lemma 4.

f dh' f dz I pdo [Aen p x V x Nenx(h,F) ] . [ rem Memxl(h',F)] = 0
-=0 0 0 0 0

In these Lemmas, the shorthand notation Ae r has the same meaning
0 0

C- defined by (3.51); en is 1 for n=O and 2 for n>1; 6 mn is the Kronecker

delta function which is 1 when m=n and 0 otherwise; and Sn stands for

"+" or "-" sign, n=0,1,2,...

It is worth pointing out that the orthogonal properties of the

cylindrical vector wave functions have been established in a mixed

domain of ( ,z,h) which is partly spatial and partly spectral. This

m implies that these functions are orthogonal on any closed surface at

which the p coordinate is constant. It is the very feature that makes

the eigenfunction expansion process simple and elegant. It should be

mentioned that different forms of orthogonal properties of these vector -

wave functions have previously been investigated by Stratton [15] who

used a mixed domain of (p,O,X); and by Tai [19] who used the entire

spatial domain of (p,O,z). Since coordinate p is involved, both [15]

and [19] spent extra effort in dealing with the orthogonal properties

of the cylinder functions.
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To see how the expansion coefficients (Cent Den, ren and Ten) are
0 0 0 0 ~

determined, it is helpful to consider a region V containing the

point source J(r)=pSrr) and bounded by a surface in V denoted bye

++
S IF (P+ , ,z): p >p' , O<2r -a.<zo.

and another surface in V- denoted by

S( cp< , O.w2w}

The geometry is shown in Figure 3.4. Now Green's theorem (vector

version) is applied to the pair (ei(hr) G ( ,re).p over region V:
0

a [aen(hr)Vxvx(G (,r)e p VxVxMenX(hr)(G (r r )-pe)Idv
.V 0 0

(G i 0 r he par(n(he r) o( r e)nds
S"+ 0 0

(3.52)

Since 0 ( ,r) Mnx(hr) are solutions of (3.11) and (3.29),
0

respectively, the L.H.S. of (3.52) can be reduced significantly as

follows:
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nJp =-

Figure 3.4. Configuration for determining Cen, Den, ren and Te~
o0 0+ 0

-region V is bounded by surfaces S at p-p and
S- at Vup - and source is located on surface S at
pxp'(p >P'>p-).
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L.H.S. =f [M nX(h.F)e(i 6(F-F' )+k 0G O(F.F1).Pe)

k- e h O~rP)-e)Idv
0

f MenX(h~r)pe 8(r-r')dv = en)(h.;')-Pe . (3.53)

VA o 0

From (3.48) and the fact that n=p at S and n=~at S-, it is clear

that

R.H.S. f [( (rr' )XVxMenx(h,r)
S+ 0e 0

+ f1 [(g§(r- r)e)xvxMenx(hF)
S- 0

0

Employing the expanded form of (gOP in (3.50), the two surface

integrals of (3.54) can be manipulated as follows:
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- 2w a. a

f dz f d* dh [re (h.,F')MAm.(h'*F)
-a. 0 -Ce M=o 0 0

+ em ,.IN~x(h'h,F)]xvxM+ (h~r)-;+
0 0 0m

+ + e~,'- +1
o 0 0 0 0 L

-- ~ dh' 1dz fP df 1xvxMnhr
M=o -00 0- 0

*[rem(ha.rm)-m.h~ + em(h'.r )N mxah".r)+
0 0 0 0

-px [rmh')vxA+ X-(hs, ) + Tem(h',F')VxN~mih.)
0 0 0 0

0

Using Lemmas 1, 3 and 4 one obtains

I w + ~() +f [- c~ s=-~~* remPX 2 H n (x ) 3p+ H (Ap )6 mn
S+m=o n 0

4wr2 + () + (1 + I
£remP X2Hg X p -;P H )amn 0
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J .- p )ds

- 2w
-f dz f P d~ f dh' 1.'e(h,,M 'Ih

Dem(h',F')NemX-(h',r)IXxMm~~~(p

0 00

- ~ ~hr~x~i(hnr)M ir'.h',r) + D~ (h r .iiqp

o 0 0 0 0mi~ r

* 21r
- Idh' Idz f P0 * pxvx~enX(h.F)

* Cem(h',F')M X.(h'.r) + Demh)exsh,]
o 0 00

-x [ rCem(h')Me-m),(h',F) +4eW'lt

o 0 0 0

*Menx(hr

Again, making use of Lemmas 1, 3 and 4,

f -- d Cee~'))2 m(-hP)' H l (Xp)6mn

7Cen~h~ -h)PX)H 'XJ(XhP)n (Xp )I1-)

-n n

CM

76



The WronsklanI

([H1~)J() HM' (1)' j2

W[ O ( (Z)J (z) -H~ (z)J (Z) -

Hence,

f (-P )ds Cji A-2 Cen(-h~r') .(3.56)

S- n 0

It is obvious from (3.55) and (3.56) that

-j8ir
R.H.S. =f r: f I d+ (-p-)ds X 2Cnhr)

S+s- n 0

Equating L.H.S. and R.H.S. gives

e C Cen(h )
0~xh~'i n 0jlr

Reversing the sign of h and solving for Cen gives
0

J E~n -4.+
Cen(h,r') Twx2MenX(h r )'Pe (3.57)

0 0

If one applies Green's theorem to the following pairs:

G%(r.r')spe), and follows the preceeding steps closely, then one

obtains
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KIn

Den(h.Fr) 8w2e- h.)+e(.8

0% 0

'":' " J en -

"en(hgr') =j2 Menx('h )Pe (3.59)

0 0

and

Ten(h,r') = T-X Nenx(-h,r'),pe (3.60)
-. 0 0

respectively.

Substituting (3.57) -(3.60) into (3-.50) results in the complete

eigenfunction expansions of the solenoidal components of Go given below:

go(r ,r') f dh X2 en~.)en(h
n-- 0-0

+ Nn(h.)N- )2e -r' e ( 0
0 rh0ts) h (3.61)

Hence, the formal egenfunction expansion of Go has been completed. It

is, however, of interest to mention that Tai [19] has shown that

Go(r,r ') = (I h g(rr) e (for all rr e V0  (362)
00 T02.

where
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ejkolr-r'l

golF F') = • (3.63)4wIF-P'

Since, for Fr*', G (F,F') is identically equal to either g'(rF') oro 0

g- 0(F,F') (depending on the location of F), it is straightforward to

- conclude from Equations (3.61) and (3.62) that

j £ n -- -- +
-- j _enI(hXr)Menx(.hr') + Nenx(h,r)Nnx(h,r') _

~J hn=o 0 0 0n0
- 1

= (1+ T2 vv) go(r,r') r ' (3.64)

D. GREEN'S DYADIC FOR A DIELECTRIC COATED CONDUCTING CYLINDER

The geometry of a dielectric coated cylinder is illustrated in

Figure 3.5. It consists of an infinitely long, perfectly conducting

circular cylinder of radius a coated by a uniform dielectric layer of

thickness t = b-a, permittivlty el = Erco and permeability P1 = Po. Cr

is in general complex to account for lossy dielectric. The z-axis of

the cylindrical coordinate system (p,f,z) coincides with the axis of the

cylinder.

In order to determine the electric Green's dyadic for this

geometry, it is convenient to divide the entire space surrounding the

conducting cylinder, denoted by V, into two distinct regions defined

below:

79

- g



I PERFECTLY CONDUCTING
REGIONI1: CIRCULAR CYLINDER

DIELECTRICI
COATING

REGION 2: AIR

Figure 3.5. Geometry of a dielectric coated cylinder.
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V1 * *- (p,,z): a<p<b, 0*42wr, --,<z<*} , (3.65)

and

V= = (p,,z): b<p<-, 0212w, -<z<-} * (3.66)

As a consequence, V1 is the dielectric layer, while V2 is the air region

surrounding the coated cylinder, and V = VIUV 2.

In analyzing conformal microstrip antennas, it is sufficient to

consider the electric current source that is located in region V2 only.

Consequently the electric Green's dyadic Ge for region V will consist

of two components, denoted by Gel and Ge2, such that

Ge(r,r') = U(p'b)Ge2 (rr') + U(b-p)Gel(r,r') (3.77)

where Gel and Ge2 satisfy the following vector wave equations:

=-=

P VXVXGel(r,r') - kGel(r,r') = 0 , r c Vl, r' E V2  (3.68)

2=VxVxG e2 (r,ru) - k 2 Ge2(FIF') =,V 2  (.9

2 2 2 - =

k u kl= m and k2 = i 2 c2  2po o = ko. In general terms, Gel(Ge2 )

can be thought as the electric field in VI(V 2 ) due to a point source in

V2 . Correspondingly, there exists two mangetic Green's dyadics, denoted

by Gml and G2, such that
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F -7., - -- 7 7 . . -r - - - v7-- - .

VxVxG'' 
2=

ml~r,r,) kGmi(r~r') *0 ,r e V1. r' C V2  (3.70)

VxVxG 2 (r,r) k k2 G2(r') =vxl5(F-F,) F F' C V 2 , (3.71)

and they are related to their electric counterparts as

* mlr'' P1x l(~' r e V1 r e2 V (3.72)

G m2(r,r') =VxG e2 (r,r') ,r,r' £ V2  (3.73)

* Equation (3.73) follows directly from (3.9), while (3.72) is established

* in Appendix E which also shows that

El(r) = P G el (rr J(ro)dv' , r v1  (3.74)

2

H 1(r) =f Gmi(r,r') *J(F')dv' F r cv (3.75)
V 2

where El and HI refer to the electric and magnetic fields in V1 due to

source J in V2. And, of course, it follows from (3.17) and (3.18) that

E () JwP2  f Ge2(rr . J(F')dv' r ' 2 (3.76)
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_ H2(r) = f G m2 J(F')dv' , C c V2  (3.77)
V
2

where E2 and H2 represent the electric and magnetic fields in V2 . It

may be noted that the magnetic Green's dyadic for region V can also be

cast into a form similar to (3.67) as follows:

-G(rr') = U(p-b) m2(rr') + U(b-p)G (rr')

-(~)Xe(~I - -J

U(p-b)XGe2(rr') + U(b-p)" VXGe(r,r') , r' c V2 . (3.78)

However, Gm will not be involved in the following analysis, and it is

being Intrnduced for the sake of completeness.

I To specify Ge uniquely for region V, it requires .Gel and Ge2 to

satisfy the boundary conditions pertaining to V. These conditions can

be readily derived by considering the corresponding boundary conditions

imposed upon the electromagnetic fields in V. First it is observed that

the tangential electric field vanishes at the conducting surface of the

cylinder, namely,

P x El(r) 0 (3.79)
pza

Secondly, at the interface between regions VI and V2, the tangential

electric and magnetic fields are continuous, I.e.
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P x [E 2(r E 1 )I P= 0 (3.80)

x[2()- H( ] p= 0H r. (3.81)

Next substituting the integral representations of the electric and

magnetic fields defined by (3.74) -(3.77) into (3.79) -(3.81) one

obtains in the following set of boundary conditions on the dyadic

* fields:

p ex (r,r) 0 (3.82)

p x [G 2 (r-r) G Gel(r-r')] b =0 (3.83)

VXe2(r,r') - x r~ =~ (3.84)
Pi ""el ''~pb =

In addition, Ge2 must also satisfy the radiation condition:

xim r [VxG e2(r,r') k j 2 rxGe2 (r~r')] =0 .(3.85)

r -

The simplest way of finding Ge2 is to apply the principle of

scattering superposition. Thus one will consider

G e2(r,r') G G0(r,r') Gs2(r,r') r,r' C (3.86)
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In Equation (3.86), Go is the free space Green's dyadic found in Section

C; and is expressed explicitly below for convenience:

= p+

G (;,') = U(p-p')go (rr') + U(p'-p)go(rr') - k" 6(j-F')

= U(p-p') - f dh I T- (MenX(h,r)Mex(-h,r')• -= n=O en en

+ Nenx(h,r)NenX(_h,r')]-
0 0

r en -

SU(p'-P) dh X -2 [Men(h,r)Menx(h,r')
-= n=O 0 0

-_ _ -+ TI PP. _

+ NenX(h,r)Nenx(-h,r')1 - - V2,
-0 0

(3.87)

and Gs2 satisfies the homogeneous vector wave equation and therefore

* -must have the form

= l--[e+l BonNn

Gs2(r,r') =8 f dh [ + h,r) + n N(h,r)
-s n=O o o en, e

"+X(h' "+ N+ N+--

Mn(hr') + [CenNenX(hr) + DOnMsnx(hr)] NenX(-h'r')
0 0 0 e 0

rr' C v . (3.88)
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* C r. r.-,-.- ..-

.9

It Is clear that the sum of G and Gs2 will automatically satisfy (3.69)

that governs G Loosely speaking, G may be interpreted as thee2 10
incident or direct field, and G as the scattered field. As for thes2

form of Gs2, the choice of Men,(hr) and Nen(h,F) as the anterior
0 0

elements is dictated by the radiation condition (3.85), and the choice

of Menx(-h'r') and NenX(-h,r) as the posterior elements Is guided
0 0

by the expression for o because various boundary conditions such as
0

(3.83) and (3.84) can be satisfied only If the posterior elements of o
0

and Gs2 are the same.

* Once the form of Gs2 is determined, it is relatively easy to W.

formulate the expansion for Gel given below:

" C

Gef(r,r')= f dh M + e4n(h,r) + $n
-e n=O on np PonIn0

+ YenMenp(h,r) + To Non(hr)]

0 0 e e

MenX(-h,r') + [aenNenu(h,r) + bOnM@n(h,r5

o o o e

+ denNen (hr) + fonMonu(h'r)] Nen (-h , '  l

o o e e 0 hr

r e V1 , r' e V2  (3.89)
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A In the case of Gel , the posterior elements MenX('hr') and NenX(-hF')
-0 0

must be chosen to match those of Ge2 such that the boundary conditions

at the interface (p=b) can be satisfied, and the anterior elements

Men,,(h, ) and N are chosen because they are the solenoidal

eigenmodes and will constitute the bouncing waves inside the dielectric

(region Vl).

It is important to note that the parameters ) and p which appear in

(3.87) - (3.89) are defined as follows:

S k-h 2  .m , >0 Re X>0 (3.90)

, j-h 1- -,Rei0 3.1

• "o.

There are totally 24 unknown coefficients in the expansions of Gel

and Ge2. Not too surprisingly, however, there are exactly 24 linear

equations that govern these coefficients after expanding the boundary

conditions (3.82) - (3.84). This 24 x 24 system of simultaneous linear

-.equations can be solved analytically. The algebraic details are

presented in Apendix F and only the final results are listed here:

Aen = An (3.92)
6. 0

Ben = ±B n  (3.93)
0
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Ce = Cn  (3.94)
0

Den u Ben -B n  (3.95)
o 0

= T n t (3.96)
0

%n =qnyn (3.97)
0

Yen= Yn (3.98)
0

.en -Pn Tn (3.99)
0 0

den  d
0a n (3.100)

aen = Pndn (3.101)
0

fen= -f (3.102)
0

ben = nqf (3.103)
0

where

T
2hn P2  u2  n

T
n = kb 2  2) 1) 1 - (3.104)

P2 2 1A2J' 12 () uPn + (k2/kl) 3 rnS nin = r-bI  Hn(Xb)Yn
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I 112 112 -Kj2 k2  -u~n+ (-utij)-r rT. 316i, d =w C -} l Hn( ' Y'n(3.106)

n wb + ("b) Y n)

. 2hn k2  U2  Sn
fn= -  () (1 - " ) "Hn(b)Yn  (3.107)

Jn( b) + U2 Tn ( .
n = - Hn (xb) + (w-) T2- H(b) ",n (3.108)

kSn

n = T'1 J x2  Hn(Ab) Tn  
(3.109)

nn

Jn(.xb) k2 i 2  Sn

mn= " n(ub) + p-Hn (ub) (3.111)

Sn = Jn(b) + PnHn(ub) (3.112)

T= Jn(vb) + PnHn(vib) (3.113)

Qn= dn(ob) + qnHn( jib) (3.114)
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r 2  P2  U22

Y -,,Q + r1 rT r-Yn n [~On +  lf-'J nPn + k2) - n

h 2 U2 2 
2

" T2) (1 - j") SnTn (3.115)

Jn(iaa)
mln = " H(a) (3.116)

Jn(ua)
n = - H'(ua) (3.117)

Hn(,Xb)
.n Hn(xb) (3.118)

, 1 Ad (1)(

Hn( ) H(1) , and H (E) = H () (3.119)-- = nn ) Hn( dt n319

Making use of (3.92) - (3.103) in (3.88) and (3.89) leads to the

following simplified versions of Gs2 and Gel, respectively:

G T2 j-den [A ;enx(h,) 8 Non(h,;)]
s 2(r,r') =n n .. -h- n ..

:"=+0" -+~ -n --

" enX(h,') + [Cn Nenx(hF) Bn M nX(h'F)] Nnx(hr)I
0 0 -

(3.120)

90

C-..

CI . - -. - C*- ..



r

and

Geirir =j -dh n

el(r,r ') -- 8W X2 . n 0 n (Yn (Menu(h,r) + qn Menp(h'r))

m ; Tn (Nin (hr) + pn Nonu(hF) )]

MenX(-h'')o + [dn (Nenu(h'F) + p Nenu(hF))

fn(Mnu(h'r ) + q Mon (hr))] Nen('h.F')_

L (3.121)

This completes the construction of the dyadic Green's function for the

dielectric coated cylinder.

E. EXPANDING THE GREEN'S DYADICS
I."-

One may have already observed that dyadic functions are

notationally so compact that they greatly simplify many formal

manipulations. Ironically it is this very compactness feature that

tends to conceal information. Often enough deeper insight can only be

gained after the dyadic functions have been expanded. Anticipating that

the Green's dyadic for the coated cylinder will be used in the analysis

in the chapters that follow, it may be worthwhile to expand Ge into

component form such that the electric field can be easily read off once

excitation is known.
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Various components of Ge in regions V1 and V2 are presented in the

following.

Region V2 (air): bcp,p'<-, 0 co,0',2w, --sQ,z'(-

It follows from Equations (3.67), (3.86) and (3.87) that

Ge (rr') G G(r~r') =G 0(r,.') + G 2 r~r

=+- - - -

=U(P-P' )g0(r~r') + U(p'-P)g (r,r') + G(-'

(3.122)
Making use of (3.46) and (3.47) in (3.87) yields

go( r r')

e3 n nh + Thx 2

n=O n(X) k

con(-*) ++ n.Xh 2 +6,-'
cos(O-') P; Z (XP)z~ (,Xp) + - Zn (.P)Z(p') sinn(O-'

P n(n kip' n'n

n1 n

+ ( kyz) 7Z(PZn(p)jcon( ) - *z1_kf') n()('P)1sn()

n h F;-~jnx ;
* -ZP'~+Tip Zn(XP)Zn (~p)csn(-f') +* k&n(X n(P 1 in*)

-h -- k~cos.o#' Oz± z. sI*nI jhz-z'

+ Z 1k LiX )tn Acosni-) - ^^ sn(113)

922

L4Z0h~--

+~~~~ ~ ~ .k2 .x~+X, .ono' .13



where,

+ (1 1d-MZn(o ti M~(~; Z(F; n E) and Z n~ M - n(

43 It is of interest to point out that formally carrying out the

operation (I + ~iVV) g (r,r') in (3.64) will lead to the closed forms
2 0

of given below:

F- jk2R jk2R
1 + e e

g0(rr 4A2k ~ ( 2  R + P R3  )cos(f- ')

J k2R

+ Q(P-P cos(qo-f )) (PCOS(*-# )-P ) R _

jk2R j k2R
e e

+ P;' k2  R + [Pi-P(P-P'COS(f-to))Q] 3  _sj ~-'

j k2R

+ ~ (z-z')(P-P'cos(.-f'))Q R3

j k aR j k2R

'2 - ~' j 2 eR + [P+P'(P'-PCOS(f-*))Q1 R3~ sn*-'

jk2R jk2R j k 2R

4 4 ;~ (k2 ee p s n ( ~ ) i
R +P R3  )cos( -*') + pQW _' -

j k2R j k2R

+ z P -zsn -)(j 1 +z z-Z')(PCOS(-')-')Q -R3

jk2R jk2R jk2R-

+ Zf P(ZZ.)Sin( - ')Q R3  kI+ 2 e + -_,)Q)

zz k2  R ((z)Q) R3 J

(3.124)
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where

(- ') ]1/2

* ~~R = FFI [p2 + p'2 -2pp'cos(*- ') + (-' 2

p jk 2R-1

Q k2 j3k2  3

2 R 2

* .Next substituting (3.46) and (3.47) into (3.120) gives

s2(rr)8  f dh I p8 72p H X)
-- n=0 en nA[~7( ) (Xp')]

jnh 1 '1
+ B [ H (Xp)H (Xp') + .. pH(IP~

h2,

I n jh
+ A ~[ ~X)~X) B [H~ (Xp)H~ X'

__2_ nh2  '-

+L HZ (CXp)H** H(Xpl)H(+P'G - BnHY (*Xp)H (XP)On4b*'

+ njh ' nAnLpW (Lp)H (P) B H2 [H~ H~XPIHo(X -

II Ih

+ * ' A [H ) )H A ))jnh 1
i Hn(PHn(P~ + Bn k2) H n(p)H n(xp') +
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1 *nh 21
+ H n(xp)Hn(Xp-)] +cn[(-j) -7 H~n( Xp)H n(p.]'Cosn(#*4)

+ B[ *H (Xp)H (XPI) - [;H (Xp)H (xp')] snn(.. ')

H7 I, Ijh(z-z')

I i (3.125)

where

Hn(t) H Hn () and H n(t) d H n (t~)

Region V1 (dielectric): a<pb, b~p'<-, O40,$'ir, -a.<z,z'<ca

It is clear from Equation (3.67) that

G e(r,r) G Ge(r,r')

Using Equations (3.46) and (3.47) in (3.121) yields

95



Geli(r,r' f ~~ dh I pp Yn [7 0 uHpp)+q H~u
8w_0 n=O nnX'Ij( nnU~

jnjnh
+ dn kXz H (p ) I jn(uP) p)+ (un)] I~[~~(p

jhu ' nh
+ d~ [ H H(XP) ~ (P)+ H dPOk f 1~ H (XI)]

n* l2 n I- n kx~p

n n nn kX

n* p+nnIpjcs (- ' pt - n [- H u H)()pH

T n j hi H1(ul[iIp)+q HHI(up)] + d 0211

jnh *jn~h

+ d [kH ( p,)[J i Ijp)+p H n(u)l n H (xH
fljk n n f n~~ PP n(

Sn

n(,ip+q~nIA)]con(- ' f' n X2 H(96)
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.. ,~uP)] + jnh p-

[J n ( u p ) + p n H n ( U P ) l + f n [ k 2 X 2 p' H- - - ( p' ) ] [ J( p ) +q n H n ( u p ) co s n( ')

; z I d jnh

- n k H ( p')I ln(lip)+Pn H n( p)] - fn 1k2 Hn(kP )]

n~ p2knH' I . ' _ __

H(Prn)] sinn('- ') + zpH
" n (J iip )+ q ni n) t k 1 X 2 , H (np ' ) ]

[Jn(up)+PnHn(up)] - dn  k k X n(XpI)I[in( p)+PnHn(UP) cosn(_-_')

i 2  ' jn h 2

I n Ik1X Hn(p'][Jn(pp)+Pn H n(Pp)] - d nkk 2X2p Hn(.p')]

[Jn(lP)+PnHn(up)]Isinn(O-') + ; 1 dn[k-Hn(Xp')]

*-I Ijh(z-z') (326

[Jn(u)+PnHn(uP)Ijcosn(- ') e (3.126)

where

Hn(n) = Hd( 1 ) and H' d H(1)(M.n { ad ( { ) = H n •

Thus, the dyadic Green's function for the coated cylinder has been

expanded into a form from which the electric field components can be

readily identified once the current density is specified.
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CHAPTER IV

PATCH DIPOLES ON A DIELECTRIC COATED CYLINDER

A. INTRODUCTION

The main goal of this chapter Is to obtain expressions which will

enable one to compute either directly or indirectly the self and mutual

0 impedances between expansion dipole modes-, and to evaluate the elements

of the voltage vector for the case of a dielectric coated cylinder.

These impedance and voltage elements are crucial to implementing the

method of moments to analyze the coupling between microstrip antennas.

The single most important quantity in these computations is the electric

field excited by an expansion dipole mode at the air-dielectric

interface associated with the dielectric coated conducting cylinder.

This is due to the fact that an appropriate combination of expansion

modes is used in the moment method solution to model or approximate the

true current on a printed antenna patch.

Extensive use is made of the electric Green's dyadic constructed

in Chapter III to obtain expressions for the electric field or its

components. To ensure continuity and consistency relevant symbols

-9
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or notations will retain their original meanings defined in Chapter II,

unless stated otherwise. For convenience, some pertinent notations are

summarized below.

V refers to the space surrounding the circular conducting cylinder

of radius a. It consists of two distinct regions V1 and V2 such that

V = VIUV 2 , where

V, = = (p,,z): aplb = t+a , 0 2w ,--<z<-

represents the uniform layer of dielectric coating of thickness t, and

V2  = = (p,.,z): bc<pm .0 p2w L

stands for the (free) space or air surrounding the coated cylinder. The

constitutive parameters for V1 and V2 are, respectively, (Pi,ei) and

(u2,c 2) with corresponding propagation constants kl=W/1il€el and

k2=w/ i2e2. The Green's dyadic for V is denoted by Ge(,r-'), where

r c V designates the field point and r' E V2 refers to the source point

which is restricted to V2. The Green's dyadic can be conveniently

represented as

Ge(r,r') = U(b-o)Gel(r,r') + U(p-b)Ge2 (;rr') , r V, r V2

(4.1)

with Gel (Equation (3.126)) being the Green's dyadic for VI, and Ge2

(Equation (3.122)) being the Green's dyadic for V2. Likewise, the

electric field is written as
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E(r) =U(b-p)E1(r) + U(p-b)E 2( ) C V (4.2)

*where El(r) = E1P(r) + *Ej,(r) + zEiz(r) is the electric field in V,

given by

El(r) iwP2  f G el(r~r') *J(r')dv' ,r e V (4.3)
V2

an 2(r) PE E2P(r) + *E 2,(r) + zE2Z (r) is the electric field in V 2

given by

* 2(r) jwP JU Ge2(r,r') *J(r)v r £- V 2  (4
2

J denotes the electric current source immersed in V2. The corresponding

magnetic field H takes the form

H(r) =U(b-p)H 1(r) + U(p-b)H2() (4.5)

with Hj(r) 1 /(jwi 1) VxEj(r), r e V1, and H2(r) =1(wa)VxE (r),

C V 2. Finally, all the expansion coefficients associated with the

* Green's dyadics are defined by Equation (3.92) through Equation (3.119)

* . which in general cannot be readily expressed because of their

0 formidable complexity.
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It should be mentioned that there is an attractive alternative to

the Green's function approach for calculating fields due to the surface

current source located right at the air-dielectric interface of the

dielectric coated cylinder. Such an approach is discussed in Section B.

It is analogous to the planar dielectric slab case treated in Chapter

II. Section C utilizes the Green's dyadic to obtain the electric field

in regions V1 and V2. The excitation is taken to be the current of an

expansion dipole mode placed at the interface. A general expression for

the mutual impedance between two arbitrary expansion modes is derived.

The computation of these mutual impedances is an extremely important

step in the moment method solution to the problem of analyzing the

coupling between microstrip antennas. In Section D, examples of

coupling between two expansion dipole modes, both with z-polarized

currents, are studied. It reveals certain interesting but important

numerical aspects of the Green's function solution. In the last

section, an expression useful for far field calculation is derived via

the method of steepest descent.

B. A SPECIALIZED METHOD OF SOLUTION

This section presents a method particularly suited for analyzing

patch antennas printed on a dielectric coated conducting circular

cylinder. This method is conceptually simple and is analogous to the

approach described earlier in Chapter II for the planar dielectric slab

case. Thus the presentation will be brief. The inclusion of this
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method is due to the fact that it does provide an attractive alternative

to the Green's function method on which the analysis in later sections

is based. In the present method, the electric surface current on the

printed conductor that is situated right at the air-dielectric

interface is introduced only through the boundary conditions. The

solution is rigorous since the effects of the dielectric coating and the

cylindrical conductor are both accounted for. It inclu? the radiation

field and surface waves. Only formal expressions for the total fields

(electric and magnetic) are derived here.

Being a surface current, the microstrip patch current is introduced -

through the boundary conditions. As a result Maxwell's equations have

to be solved for homogeneous source-free regions V1 and V2. An

arbitrary field in Vi , i=1,2, can be constructed from two scalar

functions: *ei which generates a TE field and i which generates a TM

field. Both *ei and *mi satisfy the scalar wave equation:

(V2 + ki) ei = 0 , (4.6)

2
where ki = 2uji i, 1=1,2.

The electric and magnetic fields can be constructed as

follows [16]:

- - A A

Ei(r) PEi (r) + *Ei*(r) + zEiz(r)

"vx(z*ei()) - vxvx(z*mi(r)) (4.7)
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Hi(r) pHi r + fH~r i* W (4.8)z(r

-Wj xz~ ei r)(r.8

The explicit forms of the field components are given below for

convenience:

1 a1 32

i -o -0i *ei -e - -a *mi (4.9)

- a 1 1 a2

Ej(r = ei - *mi ,(4.10)ap jWe1 p 3*3z

- 1 a2 2Eiz(r) = - T7 + ki) +mi (.1

1a 1 a2
Hp~ =p mi -(.2

a JW1 apaz e412

a 1 3
~3 - *eim (4.13)

-- 1 a2  2
H12() J W~ 0 k1 ei .(4.14)

In order to specify the fields uniquely, the wave Equation (4.6) must be

solved together with the following boundary conditions:
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on the surface of the conducting cylinder,

p x E 1 () 0 ; (4.15)

p=a

on the air-dielectric interface,

p x [E 2(r) - El(r)]p=b = 0 , (4.16)

p x -) r)]p=b = SJ( )  (4.17)

where

J S (r) = Js (r) + zJ (r) (4.18)

is the surface current density on the interface at p=b. Of course, the

solution must be chosen so that the radiation condition is satisfied as

Due to the cylindrical symmetry of the structure under

consideration, the scalar functions, *ei and *mi, can be expressed as a

Fourier series - Fourier integral:

l - ! -I ,
Sei(p,nh) in

;i'' 2 n=- i(ph) (4.19)

where

104



*e 1~~h 2w *e F -Jn -Jhz
S2w'f f e e dz d#

*~mi p~nlh) o -m mi (r) 1 (20

Similarly, Js(Fr) can be formally represented as

-ln 1h
5 (r) to~ {*5 (pn.h) + zJ5 ( pn,h)l e~" eh dh

n=-

(4.21)

with

21r f f - i e e zd
*~~~ I 5 (p~n~h) 2w J5,(r)1  ~ iZd

J 5 ~(~n~h I a -~ ~ r);(4.22)

Substituting (4.19) into the wave Equation (4.16) leads to the

Besssel's equation of order n:

d (pd ((*p 2  f] '~ei (p,n,h)

[P dp dj) + -(p~) n=) 0, i-1,2

(4.23)

where k = / .T The solution for region V1 can be written asp1 11
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I-!. i !- -
eA e((n2h)) B-

I (pnh) n (k P H (k p)

Imj(p""h) Am(n.,h) B m(nh)
I . .... (4.24)

where H(n)( ) and H n)(t) are the Hankel functions of the first and

second kind which represent, respectively, the outgoing and ingoing

waves in VI. As for region V2 , the solution takes the following form:

I 4e 2 (P,nh) r e(n,h) HI) (k p)
4'm2(P1~1~) =n P2 '(.5

, r Im(nh)

since there are only outgoing waves in V2.

Making use of (4.24), (4.25) and (4.19) in (4.9) to (4.14) one can

,. express the field components more explicitly. In particular, the

transverse field components with respect to the p-direction can be

* rewritten as follows:

in region V1 (a~pb, 0,02w, --<z<-),

- = 1 (1) (2)' nh
E 10(r) = 2 I dh{k [A H (W(k p) + B H (k p)] + l

21P1 e n p1 e n 1 J (Ale Pn=-cD - T

A) B (2) jn$ jhz

AmH n (kP ) + BmHn (k p)1 1 e e (4.26)
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n=- -00• 
m

- - 2

PL [A H(1)(kpp) + B H2)(k p)I} e ejn #e' (4.27)

Sm n P1 m n4Pi

. ) = h [ (2)' nh

H B Hn(k (k + .
=2 Pm nl n P1 JWU 1P

()(2) jn*, Jhz• [A H(I)(k p) + BeH (k p)I} e e * (4.28)

e n Bi e n 0

S(r) f dh

k 
2

IP (2 jn(n)kpp Jhz

Pw' Ae n (kPi BeHn(2) (k p)]l ein e (4.29)

in region V2 (bp<m, 0q42r, --<z<-),

E 20(r) 2 j dhj[kP2 r eH (k Pp)j

n=-ao -a*

nh (1) jn* jhz

+ wJcp [rmHn (k02 p) ]}e e,430)
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Ei f fdh

,--

,-.,. 
-.l

* P2 (1)no jhz
I j- 2 rm (k P2 ")I e3  e ,(4.31)

M o

E2 ,(r) = J dh-[k r H (k p),
n=- P2 P2

nh () jn jhz
+ r H (k P) le e (4.32)

2P e n P2

H2 z(r) =72i j dh
n-~

P2 2~ kpP

(1) jn* jhz
• - e n 2 (k P)e e (4.33)

k
2  .

where HMI() = d H (i)C) i=12.
n d Hn () =12

The unknown coefficients can be found from the boundary conditions.

The solution procedure is rather straightforward, hence the algebraic

4 details will be omitted. Only the key steps and final results are

presented here. From boundary condition (4.15), it is evident that
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Be =aeA e e eH(2 )'(k a) (4.34)

nl Pi

H ka)

B = -qaA CLa, (4.35)
m m m H(2(k P1a)

Next it follows from boundary condition (4.16) that

A H(1)' ( b) H (2)' (k01b)]

nh (1)(2
jw jt~b Am[Hn (k Pi b) -M~ ( I )

(1)' nh ()
r rkH (k b) + r T (k b) (.6eP 2 n P2 Jwc 2u mn P2 *(.6

and

2 2k k

- m[ (k b) I( (k b)] H - 2rH'(k b)

(4.37)

Finally, boundary condition (4.17) implies
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nh ()()
[j wi, 2b n~ P2 p~ e -k P2 Hn (k P2 b)rml

nh (1) (2)
jwi1 b A e[Hn (k P1b) ae ni (k Pib)] j Jz (p n,h)

(4.38)

and

P2 P2
*n (k2 ~ + I- A (k b) H iH2 (k b)3}

U)2 2~ e jp n p I e n Pi

= J5 (ppn~h) .(4.39)

* .Solving (4.36) -(4.39) for Ae, Am, re, rm simultaneously yields

Am 0 (4.40)m m

A Yr mm(.1e =Yr mm(.1

Qr + rm(4.42)4e e s

Qzere + Q zmrm Jsz (4.43)

or
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1 7-

r~ (4.44)

n, Q IQes + Qoe'sz] (4.45)

where
k 2 )(1)(k b)

E1 P2 n P

(1) (2)
D 9 fln (k pIb) -t 9 H n(k Pib) ,g~me,m (4.47)

D= k [H (k b) a aH '(k b)] * ge~m (4.48)9 pI n P1  g n pi

k H(1)1(k b)
Pzfn P2

e ~(4.49)

nh (k~ 2 k 2 H~l)(k b)~

k2  2
1 P1 P2

Q H i' ee- 2  .'(k 2b)) (4.51)

2
k
p1

Q -O I~u7 De (4.52)



"HM (kb) D -
Qze =j w u2 - ee (4.53)

Qzm 6mm k H(1)k nh

P2 n P2 JWU 1 e~m (4.54)

and

Qd Q Q QmQze (4.55)

Thus all the coefficients have been completely determined. These

40 In turn uniquely specify the scalar functions *ei and tmt, i=1,2, from

which the electric and magnetic fields in both regions V1 and V2 are

readily obtained via Equations (4.9) to (4.14). One may have already

observed that this solution is very appealing for analyzing problems

that involve printed dipoles or patch antennas provided the s,' ace

current density has a closed form transform in the sense of (4.22). For

general volumetric electric sources, the present solution scheme will

, - certainly fail. In such event, the Green's function approach can be

used although finding the Green's function itself often presents the

-_ most difficulty; however, once the Green's function is found its formal

use in the solution is straightforward.

4-4
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C. MUTUAL COUPLING BETWEEN EXPANSION DIPOLE MODES

In this section, the field evaluation is based on the Green's

dyadic Ge for the dielectric coated cylinder constructed in Chapter III.

Ge essentially describes a linear relation between the electric field

and an elementary current source as indicated by (3.20). Hence the

total electric field E produced by a distributed current source J is

obtained through an integration (summation) process described by (4.3)

or (4.4).

In the analysis of mutual coupling between conformal microstrip

antennas on the dielectric coated cylinder formulated by the moment

method, the chosen set of expansion dipole modes plays a very important

role. The efficiency as well as accuracy of the analysis depend

intimately on how closely an individual mode resembles the actual

current distribution on a microstrip patch, and on the transformability

of a mode in the Fourier sense (i.e., the sense of Fourier series and

Fourier integral). Furthermore, one's ability to accurately evaluate

the field due to a mode will also affect the quality of analysis in a

grand manner. The electric field obtained via the Green's dyadic will

be an exact solution since the dyadic function accounts for the

conducting cylindrical ground and its dielectric coating rigorously.

A microstrip antenna on the dielectric coated cylinder consists of

a printed conductor that conforms with the coated cylinder. The printed

conductor is typically very thin so that the current flowing on it can
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be regarded as a surface current. Hence It is appropriate to choose a

set of expansion dipole modes as described below:

= 1 (r): t = 1,2,..., L <-1

* where

I-- - A!

O(r) I ,oJ€(r) + zJtz(r) , r e St
Jt.r.:I _0 , F '(4.56)

sE= r=(p,4,z): p=b , Czc- Z'c+*t , Zzc-z, zZc+ZtI V2

The symbol b+ denotes a real number which is infinitesimally greater

than b. This essentially says the basis set a consists of L (finite)

expansion dipole modes. A typical mode J represents a surface current

density which vanishes outside a rectangular surface patch St on the

air-dielectric interface with widths 2bfg in the *-direction, 2zt In the

z-direction, and centered at (b+ , *zc, Ztc). One may note that it is

not necessary to think of S1 as being a conducting surface patch. The

reason for requiring St to be located at p=b+ instead of p=b Is

.* consistent with the use of the Green's dyadic and also is closer to the

actual structure being modeled.

Denoting the electric field in V due to mode Jt, 1=1,2,...,L, by

(r) pEt + *E (r) + zEiz(r) , r V1  , 1=1,2 , (4.57)
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and emiploying (4.3) and (3.126), one will find

2 me Go
E (r f ds' f dh I u)+qH(U)

r) Bi in n=O nt XP 1j n nu)

4 [Y-0b jnhhv
[H A)+ -~ H + [Ab)+ H(u)fn' 2 k 1 X'nn +T n(Pn nPl

nh
DT nr~n I(AI) + k bd nH n(.Xb)])in*O) 0(

jhu e
+ ( [Jn(Up)+PnHn (up)dn ]dH nXb)

n -jh(z-z')

(4.58)

U2
Ej=r - ds' f dh Bi cl( ljn(uP) +qH

£ ~ n=On

[Y'b'+jnh nh
n~~F n(H xb + [ bnn X) kX jn(tP)+Pn n(UP)]2 k1A

nh
-~ .[,H.(Xb) +k 2 Xb dnH n Pb)])on+#

jnh
k kk p [Jn( pp)-P n Hn (lip) Id nH n()b)
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W112 2 2

Elz(r) f ds' f dh IXO)+ i)
8w-1n nfl

[t~~H~(xbd - ~Jbdl(Xb)j)snn(#-*')JL,(r')

( jh(z-z')

1 2

(4.60)

and similarly, using an appropriate form of Ge2 in (4.4) yields

'2 Go
E p(r) =- dsa f' dh I enI(Tp H (~[~Xb)

+jnh h ' nh

nh

2

jhX I~)

2 n

nl - jh(z-z')
- kp B H X) (b)on~-'J(r')}e (4.61)
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E2*(r) . " ds' fdA I -mHn(XP)[in(Xb)

# jnh nh nh
+ (AnHn(,Xb) + - BnHn()b))] + AHx) [ JnX b

*m , nh
+ (JBnHn(AXb) + kXb CnHn(Xb))I)cosn(o-4)J,(r'

jnh
-b H Xb))- t22 p Hn( XP)1jn( b)+Cn n(b)

Sh h(z-z'
k BnHn(XP)H n(Xb))sinn(f-b1J r )}eh -

2 (4.62)

and

- 2 jnh
E2 z(rl -_-_ 8 ds' f dh I En kJb Hn(XP)[Jn(kb)+C H (Xb)]

t - n=O 2nfmX
+ - BnHn(Xp)H (Xb))slnn(*-*)Jt(re)

2

2 - 'h(z-z')

(" Hn( XP)[Jn(tb)+CnHn(Xb)])cosn(4-4')Jtz(r')}e

(4.63)

t .t
It should be remarked that the expressions for E p, E2* and E.z are

r- derived with the understanding that b+<p<-. Furthermore, in carrying

out the calculation of the electric fields using the Green's function

according to Equations (4.3) and (4.4), the Jv(;')dv' term has been

replaced by the Js(r')ds' term, where Jv and Js denote the volumetric

and the surface current densities, respectively. This is necessary

because the expansion modes in are surface currents. Clearly,
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Ge2(r,r') = G (F,F') + Gs2 (F,F.) = go(r, F') + Gs2(r,r) (4.64

where go and G are expressed by Equations (3.123) and (3.125),
0 s2

respectively.

The fundamental definition of mutual impedance between expansion

modes Jz and Jm is given by

zim = - 2 E2(r) * Jm(r)ds , L, m=1,2,...,L, (4.65)
S

m

where the limiting process p+b+ is implied. It follows from (4.56) and

* (4.57) that Zom can be rewritten as

-w"

Zzm [ - [E2,(r)Jm (r) + E2z(r)Jmz(r)jds (4.66)

m

Letting b+ b and defining

,h) f ds f ds'J slnn( -$') jh(zz')

7c; Sm  S
J (zm;nh) cosn( - ')

Zmc+Zm *mc+ m L+tIt
= dz f bd f dz' fJl bd*Jcl(b.',z')JmO(bgo,z)
ZmcZm *mc-m Z Lc-Z z -W&

17..

*Inn(t-o') eJh(z-z' ) (4.67)

cosn( -t')
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where c = *,z and 13 = ,z, one will arrive at a general expression

* for ztm by substituting (4.62) and (4.63) into (4.66) as follows:

=M +w f dh I n 1(;kb)I[J n()Xb)

jnh nh nh
+AnHn(b+k 2 XbBnn(b 2XbHn(D L2 X nAb

+ nH(x))+jB H (,Xb)])J (g,mnh)n nn n*'

jnhX sH (H (Xb)[J (b)+CnHn(X)b)] - k. B Hn(Xb )Hn(Xb))Jz,(t~m;n,h)

j nhX
+ 2b Hn(Xb)[J (xb)+C Hn( kb)] + -BH(b)H (Xb))Jfz(X~m;n~h)

+ (H (X[nxb+nnb)])Jz(t,m;n,h) I ,m 2 *L

(4.68)

From (4.68) one can readily obtain the mutual impedance between two

*-polarized modes, two z-polarized modes, or two modes each with

different polarization.

The remaining quantities to be calculated in order to set up the

moment method solution are the elements of the voltage vector which, in

the present case, are defined as follows:

V E,(r) .Ji(r)dv 9 t£1929...,L , (4.*69)
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where Ji denotes the excitation current source. Assuming the constant

current filament model described in Chapter I for the planar slab case

still holds for both the coaxial feed and the microstrip line feed, each

of which joins a microstrip patch at (b,os,zs) with terminal current Ii,

one can immediately write

Ji(r) =PI1 *rcV (4.70)

Making use of (4.58) and (4.70) in (4.69) will lead to

21o. 1 j
8w Jdh I e{( [Y H (Xl,) + -n f H(Xb)l
87r n=0 I( n n k2Xb n n

h
LIq~ nn-i) - I'(q n n)] + k [jT nH n(Xb)

+nh sjh
k X dn nXbl1( n ))J(4~~lh + rk d n H (Xb) ll(pnln)

1c jhzs
H2 f ~Xb)[I(q ,n-1) I I(q .n)flJ (z;Os,n,h)}e t=1v2,.e.,L,

(4.71)

where

1 I P ~ , 'i) = I u J 1( uP ) + n I H n ( l ip ) ] d
I'(qnn) a n

S(lip) + H~n blp (4.72)
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* j~pn) =~ J~(up) + H n(up)] dp (.3
*I(q n n) a I

and

SS

J5Lzn) = 5Jzzb.~z) cosn(-') hz'

z 9.c ZZ c -zsinn( - ')

* - -(4.74)

with a O ,z. In Equation (4.71), the integral I(qn,n-i) does not have

a closed form and hence must be evaluated by numerical means. However,

U in the case of thin coating, where t4<a, I(qn,n-i) can be approximated

as

I(q n,n-1) p(b-a)[J 1 ua) + qnH p(a)]

U2(b-a)2

+ 2 nJ-1( a) + q n n1( pa)] (4.75)

which is obtained by integrating the two leading terms of the Taylor

series of the integrand.

[ 121

............................................................ .
. . . .



D. NUMERICAL EXAMPLES

The mutual coupling between two expansion dipole modes is studied

in this section. Figure 4.1 shows two expansion dipole modes on the

surface of the dielectric coated cylinder. Mode 1, centered at (b,0,0),

has width 2w1 =2bp 1 and length 2h1=2z1 ; mode 2, centered at (bq2cz2c)-

* -. has width 2w2=2b 2 and length 2h2=2z 2. Both modes have only z-polarized

currents. Past experience with the planar dielectric slab problem in

Chapter II suggests that a reasonable choice of expansion modes (basis

functions) is a set of piecewise sinusoids. Hence the currents of modes

1 and 2 are defined as

sin[,c (z -Iz-z I)]

I-Ar zjz zrr = z I z 2b sin(Kz) rcS

Selsewhere

(4.76)

where S=[r=(b,t,z):4- zc,"z IZ-zzcZ"}, t.=1,2, and (referring to

Equations (2.65) and (2.66))

* K W 2Z ' (4.77)

with
1- 1

r 2  r lot

E2 + 2 2 b) (4.78))
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It th~en follows from Equation (4.67) that, for t.=1, m=2,

7~'c S s
1 0 (1,2;n,h) 3 (1,2;n,h) 3 (1, 2;n,h) =0 ,(4.79)

and

fc1  dz f2~ bd4 dz' P bdt'J 1z(b, ' ,z')J 2z(b, ,z)

4<1K2sin(n41) sin(n 02)

S4sin(K I z I )sin(K2z 2.) nn cos(n1 2 )Z(h )Z2 (h)

jhz
e c (4.80)

where
cos(hZ)- cos(K Z

= (K2 h2) =2.1,2 .(4.81)

Substituting (4.79) and (4.80) into (4.68), with X=1, m=2, and
jhz2c

recognizing that the integrand, excluding e ,is an even function

of h yield-
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cch ) sin(nl 1 ) sin(n 2)
z 12 A12fdh c W(n,h) nn

0 n=O n

cos(n 2c) cos(hz 2c) Z1 (h)Z2(h) ' (4.82)

11

where

A 'P2 K 1 2 
(C2

1? =kT22l 14,sin( IZ, )sin(IC2z2) (4.83)

W(n,h) = X2HnXb) + CnHn(Xb). (4.84)
In

Recalling the definition of Cn in (3.110), one can rewrite W(n,h) as

* W~~h) j2 k2 21W~~) b k)u' [X,(n,h)-X3 (n,h)/Xl (n,h) ] ,(4.85)

where

02
Qn P 2 M2

X (n,h) = - :- r (4.86)Tn  M486 n-:

P2 Pn k2 2 p2

X (n,h) = - r- *SH (i) - r (4.87)

X (n ,h) ( 2 nh

3)-;) I- ( ) (4.88)
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H(xb)

rn =H (Xb) (4.89)
n

J (pa)
n

n Jn(Ib Hn (pa) H n(Wb (4.90)

JV (pa)
n

Oln -nib Hn-(-a-) HnUjib) (4.91)

3 (v~a)n
S n inJ (rib) H n~ (pa) Hn (vb) (4.92)

* Jn(pa)

Tn ='n (llb) -H,'(pa) Hn(lb) (4.93)

and
___F I- I F -I

X vfk-? h /k?-h 2 ,with ReX_>, 0
> 0*I (4.94)

It may be assumed that p1=tu2 without much to the loss of

generality. In the evaluation of z 12 in (4.82), there are several

critical points that need special attention, namely:

a. It is computationally more efficient to perform summation over

n before integration over the h variable. This is due to the fact that

the sequence of cylinder functions

)N

can be generated efficiently for =va, pb, and Xb. N is the maximum

*index number which, as indicated in Appendix I, is dictated by the
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dynamic range of the computer being used to compute the sequence. The

number of terms summed in the series of (4.82) can be determined by

considering the well-known series:

n2  6~ (4.95)

Supposing 6>0 is an error threshold, there will exist an integer Nmax

V such that

-- maxi

n n < ; (4.96)

It is clear that using Nmax as the terminating index value for the

series in (4.82) will also satisfy the same error criterion in the sense

of (4.96) since the the tail end of the series is dominated by i 1/n2

Nmax
In general, N is no greater than Nmax. The evaluation of W(n,h),

for NO, is straight-forward provided the sequence

:.

N

has been calculated. The calculation of this sequence of cylinder

functions is discussed in Appendix I which also deals with the case as

As for Nn ax, the evaluation of W(nh) requires two separate

treatments:

1. When I"-nn 1>. 3, the Debyes asymptotic approximations of
I I

s (0. Hn ( ) and Hn () are valid and can be used to

reduce the burden to computing W(nh). More specifically,

one can write
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(H ( (2)

where

n(tanhy-y)-j ,(.8

4 (4.98

(2) 1 I 5A, .75A2

(4.99)

A1  1 4 Y (4.100)

2=7 385

2 128 576cth- + 3456 coty , (4.101)

and

n 
-

coshy =(4.102)

(2)
Directly differentiating H n~ with respect to E yields

H(2) d (2) ±n(O (2) (2) -

* H (~)= ~ H,. ~ e M ~ ~~ ~() (4.103)
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where

n( d = sinhy ,(4.104)

and

(2) d (2)

g

1 I~- .5A1  .75A2
11 ± n + n 2

2 Csi nh2 Y -2 n =tanhy _ tanhy (~tanhy) _

3 33 77
+ I ~ (cothy - 5coth3y) 8n C4 ( coth~y - coth4y

385 oh3 ~36 C~hY j (4.105)

3The asymptotic approximations of Jin(C) and JnC are naturally

derived from the relation that ~ [n() H ()b

IL2. When I -njn 1 3, the so-called transition region, the asymptotic

approxmations Of JnM, HnM~ and their corresponding derivatives

take on different forms which are described in [26] and will not be

repeated here. It may be noted that in this region, both n and

are sufficiently large. Again employing these approximations to

compute W(n,h) will significantly improve the efficiency.
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As a consequence, it is convinced that the mutual impedance between

mode 1 and mode 2 is reasonably approximated by

N
" max sin(n ,) sin(n 2 )

z12  A12  f dh W(n,h)
0 n=0

cos(n4 2 ) cos(hz2c) Z1(h) (h) (4.106)

b. Appendix G suggests that condition (4.94) will restrict the

contour of integration to the fourth quadrant in the complex h-plane.

In Figure 4.2, the broken lines denote the appropriate branch cuts

starting from the branch point h=k2 (-k2) going to h=0 on the real axis

and then to h=j-(-j-). Quite significantly, Appendix H indicates that

both Pn/Sn and Qn/Tn are odd functions of P. Hence, it follows from

(4.85)-(4.87) that W(n,h) is an even function of u. Thus no branch cut

is required for the square root function u, i.e., k1 is not a branch

point.

c. There is at least one pole for each n on or above the real

h-axis (depending on lossless or lossy dielectric) between h=k2 and

h=Rek 1. The original integral for z12 in (4.106) can be computed

along the contour r which runs along the real h-axis and overpasses the

the poles with infinitesimal half circles as shown in Figure 4.2. Such

• contour requires the knowledge of the pole for each n, OgnNmax. To

avoid the numerical burden of locating these singular points, it is

- computationally more suitable, and justifiable by Cauchy's theory as
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Imh

-BRANCH CUTS POLES

AkI
ok k2X ... x X h ~

hi r

Figure 4.2. Proper contours of integration and branch cuts in the
complex h-plane.
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well, to use the deformed contour ro which starts from h=O going down

the negative imaginary axis to some point h=h I sufficiently away from

the singularities. Next ro moves parallel to the real axis to some

point h=h 2, with Reh2>Rek I, then travels vertically upward to meet the

real axis at h=h 3. The final segment of ro extends from h3 to h=-. The

contour r0 is also shown in Figure 4.2. It should be cautioned that one

cannot let ImhI become too negative since then the cosine functions in

(4.106) (e.g., cos(hzt) and cos(hzxc), x=1,2) become exponentially

large. This will unfortunately cause numerical difficulty in

accurately evaluating z12 which is typically very small.

O
d. The integral in (4.106) can be evaluated in three stages as

symbolically written below:
H H°

z1 2  Q 2 dhdh , (4.107)

1 H2

where H2>HlRekl and

N
max sin(n¢j) sin(n02 )

(h) A nW(n,h)
12 nO n n

cs(n412c) cOs(hz 2c)Z1(h)Z2(h) (4.108)

Stage 1 refers to the integration from h=O to h=H I. The upper limit

H1 is chosen such that
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2 2 2 2 1/3 (4.19)
2 1 maxk 2  1 max ma

The integration is done numerically using Simpson's quadrature rule.

Stage 2 refers to the integration from h=Hl to h=H2. Because of

condition (4.109), for all h>Hl, the function W(n,h) can be greatly

simplified by replacing the cylinder functions with their Debye

asymptotic forms. Taking the leading term in (4.99) and substituting y

by jy, one can deduce from (4.97) and (4.103) that

(2) 2 j[ (si ny-ycosy)-ir/4]
Hn ~ rsn e - ,(4.110)

and

(2) d (2) (2)
Hn -) =~ Hn jsinyHn M (4.111)

o where y(n,. ) is defined by cosy =n/c. It readily follows that

n j2C&(siny-ycosy)-w/4]

(2() e (4.112)

nl j2[&(siny-ycosy)-r/4]

2) -- e (4.113)
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and

Employing (4.112) -(4.114) will enable one to obtain

n ex+

Sn jsnyn-ib (4.115)

eX1

T n jslny((nljb) -X~ (4.116)

where

x j2{iib[siny(n,ipb)-y(n,uib)cosy(n,ub)]

- atsiny(n,pia)-y(n,ipa)cosy(n~ipa)1} (4.117)

It is now quite apparent that these asymptotic forms will reduce the

complexity of W(n,h) many folds.

Finally, Stage 3 refers to the integration from h=H2 to h=mD. 42

can be chosen so that X~pjh and IEJI>n, with &=pa, pb or Xb.

Consequently one sees that y(n,Ft)=7r/2, cosy(n,E)=O, and siny(n,FE)=1.-

One can further approximate that Pn/Sn=-j' Qn/Tn=-j and rnj Al ths

approximations greatly simplify W(n,h) to

W~h) = j2h (.1).
irb(1+e (418
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which is independent of n. In addition, noting that

Z1h) -h
2  

'(4.119)

cos(hZ2)-COS(ac2Z2)
Z2(h) -h

2  
'(4.120)

and making use of trigonometric identities, one can write

f ~hdh wb1+ jA12  N ax sin(no1) sin(nW2  9
wble n n 2c 1

2 ~r n=0 oO~c

(4.121)

where

=a, cos(bzh) h3  t1,.,9 ,(4.122)

2

IP with

a 1-4 bl =Izl-z~i - ' (4.123)

a 2 4 b 2 lizl-z I + z~)f (4.124)

3 -4 b =(4.125)3 4, 3 Izl+z 2 -z~cI
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a4  4  b4  Z 1 + 2 + 2c (4.126)

COS( KjZ 1)

a5 =- 2 b b5 = ,z~ (4.127)

COS (c Izi)
a6  2 2 2c (4.128)

COS K ' 2 Z2)
a7 =- 2 , 7  1 z- 2cl (4.129)

a2 8 1 C2c '2 2) ,b (4.130)

a9 =COS(KIqZ)COS(ic2Z2) ,b 9  Z2c (4.131)

Finally, employing an integration by parts, one can verify that, for -

f2 COS(bzh) h3 = ~ csbH)H
H - 2

H2 H2 btsin(bH2)1J ci(bH 2),

(4.132)
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71

where

i A " cost

ci(b H) f OSt.
Z 2 t (4.133)b H2

Z2

is known as the cosine integral.

For illustration purposes, two numerical examples of coupling

between identical expansion modes are considered using the theory

developed in this section.

Example 1: E-plane coupling

The geometry of this example consists of two identical modes, of

length L = 0.15 m. and width W = 0.075 m., on a coated cylinder of

radius a and dielectric coating of thickness t = 0.003175 m. with

1c = *2c = 0 and zic = 0. The separation, S = Z2c, between the modes

varies in the z-direction only. The operating frequency is 633 MHz,

with Er 2.56 and tanS = 0.0015.

In Table 4.1, results are given for the self impedance of a single

a expansion mode (zll) on cylinders of various radii. It is evident that

z1 1 converges to the infinite dielectric slab value as the cylinder

becomes large. This is a good indication that the theory and analysis

techniques presented here are valid. Table 4.1 also shows the

convergence of the summing series (Nmax), the contour of integration

ro (hl and h3, and the limits of the three stages of integration

(H1 and H2).
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0 . .

TABLE 4.1

SELF IMPEDANCE OF A SINGLE EXPANSION MODE

Radius a Self 1 1 1
Impedance z 1 Nmax hl h3  H1  1H 2

0.25 0.145-jO.4?9 62 -jO.2 3.0 50.0 70.0

0.5 0.118-jO.4?2 121 -jO.1 3.0 50.0 70.0

1.0 O.104-jO.418 240 -jO.15 3.0 50.0 70.0

3.0 O.0957-jO.415 717 -jO.1 3.0 50.0 80.0

10.0 O.092-jO.419 1998 -jO.05 3.0 55.0 70.0

_______I .092-jO.399 1 - 1

Note: X0  free space wavelength =0.474 (mn).
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Mutual impedance (z12 ) of the expansion modes is plotted in Figure

* 4.3 as a function of separation between the modes for cylinders of radii

a = 0.2 5xo, 0.5Xo 1.Xo and lOX0 , where Xo denotes the free space

wavelength. It is seen that the coupling rapidly weakens for

S>0.3xo . Generally this is in agreement with the planar dielectric slab

case studied in Chapter II. It is interesting to observe that the

degree of coupling between two expansion modes in the E-plane

configuration varies slightly among cylinders of different radii. This

leads one to conclude that the curvature of the cylindrical surface has

little effect on the energy propagating in the z-direction as surface

wave modes. The values of z12 are also listed in Table 4.2.

Example 2: H-plane coupling

This example repeats the data of Example 1 except that Zc=Z2c=O,

ic=o, and S=bt2c is the separation between the expansion modes which

varies in the @-direction only.

The results are plotted in Figure 4.4 and tabulated in Table 4.3.

It is apparent that the coupling in the H-plane configuration gradually

reduces as the radius of the cylinder increases. This can be explained

by the fact that waves propagating circumferentially shed more energy

into the surrounding space when the curvature is large. One may notice

that, in the a=O.25Xo case, coupling is reinforced at S1lXo which is

close to the back side of the cylinder relative to expansion mode 1.

This is due to the fact that waves which originate from mode 1 and
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TABLE 4.2

MUTUAL IMPEDANCE BETWEEN TWO IDENTICAL EXPANSION MODES

IN THE E-PLANE
rhJ

MUTUAL IMPEDANCE z12 (volt-amp.)
S a=O.25Xo  a=O.5Xo  a=l.OX o  a=1O.OXo

0.1 0.119-j7.528 0.095-j7.491 0.082-j7.472 -

0.25 0.068-j5.578 0.055-j5.555 0.048-j5.542 0.041-j5.523

0.32 0.0504-j.1981 0.04331-j.2028 0.03894-j.2037 -

0.4 0.023+jO.016 0.023+jO.007 O.022+jO.002 - '4

0.5 -0.005+jO.026 O.001+j.020 0.005+jO.015 0.006+jO.0141

0.6 -0.021+jO.014 -0.013-jO.013 -0.009+jO.014 -

0.75 -O.020-jO.010 -0.016-jO.004 -0.014-jO.002 -0.O11+jO.001

0.9 -0.002-jO.021 -0.004-jO.014 -0.004-jO.010 -

1.0 0.011-jO.016 0.005-jO.013 0.001-jO.009 OO-jO.008

Note: xo = free space wavelength = 0.474 (m).

S = separation.S
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* Figure 4.3. E-plane coupling for identical expansion modes on coated
cylinders of radii a *0.25AO, O l, 1.% and 10.,
~o *0.474 m.).
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Figure 4.4. H-plane coupling for identical expansion modes on coated
cylinders of radii a *0.25Ak, 0.5XO, 1.AO and 3.X0*X 0.474 in.).

t 143



propagate circumferentially in opposite directions interact more

strongly when the paths of propagation are short (as for the case of

small cylinders), and weakly when the paths of propagation are long (as

for the case of large cylinders) because of the loss of energy along the

paths.

Figures 4.5 to 4.7 show that E-plane coupling is in general

stronger than that of H-plane. This is also attributed to the shedding

of energy away from the surface of the coated cylinder by the

circumferentially propagating waves. Even though there is no curvature

S.effect, it is interesting to recall that the H-plane coupling is also

* weaker than the E-plane coupling in the case of the planar structure.

E. FAR FIELD CALCULATION
+ jis known

If the current distribution J(r') + 'J, ) zJ ('

for a microstrip antenna, then the field can be computed for an

arbitrary V. In practice, it is of great interest to know the

radiation pattern of the antenna. To this end, this section will derive

a general expression via the method of steepest descent to facilitate

the far field calculation.

* By studying Equations (4.61) to (4.63), it becomes apparent that

any electric field component, due to J, can be expressed in the

following form:

no n T(F,n)

where
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Figure 4.5. Coupling for identical expansion modes on a coated
cylinder of' radius a * 0.25).O (h * 0.474 in.).
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n ('hz)
T(r,n) f f' f(,n,h)I eih dh (4.134)

f(4 ,n,h) =g(n~h) J (r' n(-') e hbdg'dzl' (4.135)
S __i -

a z q' , S denotes the surface of the antenna, and g(n,h) involves

the expansion coefficients of the Green's dyadic. Furthermore, f( ,n~h)

is an analytic function of the complex variable h along the path of

* integration r (Figure 4.8) with end points at infinity. The choice of

r is discussed in Appendix G.

In the far zone, IXpi l pik -h2  + -~ , one can employ the large

argument approximations for the Hankel functions:

(1) j(p -nir/2 w i/4)
Hn(NP) -V 7-2, ejX (4.136)

and

2 j(Xp -nir/2 w i/4)

H (XP) -e ,n=0,1,2,.,. (4.137)

Using these approximations in (4.134) reveals that it is sufficient to

consider integral of the type:
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T7(r.n) = Jf(on,h) 2t -I ei/ t4+h dh ,(4.138)

which can be evaluated asymptotically using the method of steepest

descent as IN +C

*Introducing the transformation

-h -k2COSW (4.139)

and realizing that z zrcosO, p rsinO, where r and e are the usual

spherical coordinates, one finds that

p kj-h + hz k -krcos(w+e) (4.140)

Hence, (4.138) can be rewritten as

k2rq(w)
*.T(F,n) f F( ,n,w) e dw ,n=0,1,2,... ,(4.141)

rw

where the contour r in the h-plane is mapped onto the contour rw in the

w-plane as shown in Figure 4.8,

q(w) =-jcos(w+e) (4.142)

and

F(,-w j(nr/2 + 'I/4) 2~k2 sinwFi,'w rrsin a f( ,n,-k 2cosw) . (4.143)
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The saddle point is given by solving)

q'w jsin(w+e) =0 .(4.144)

It is clear that w5  i- is the appropriate saddle point. Observing

U that

q(ws) =-jcos(n-9+9) =j (4.145)

and

q"(ws) =jcos( Tr-9+9) =-j *0; ,(4.146)

one realizes Iniq(w) =1 along the steepest descent path (SDP), and ws is

* a first-order saddle point since q"(ws)*O. Letting w=wr+jwi, one finds,

along the SOP,

Imq(w) =Im{-jcos(wr+O+jwi)} cosh(wi)COS(wr+G) =1 . (4.147)

As wi+t-, cosh(wi)+o, thus COS(wr+S)+O in order to satisfy (4.147).

This suggests that the SOP is asymptotic to wr=1r/2-9 and wr=3Ir/2-6. In

addition, introducing the real variable 8 via the transformation

q(w) =q(vd 5)-oz (4.148)

leads to

dw -- 2B 419

q_(w)(419
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Upon applying L'Hopital's rule to the indeterminate form for dw/da in

(4.149) when 0=0 (i.e., ww5) one obtains

dw -2t/

ja s~o= ' ) e "4 (4.150)

Equation (4.150) implies the SDP makes an angle of 450 with the real

w-axis at w=ws. The SDP is depicted in Figure 4.9.

Finally, a general expression for the first-order approximation of

TQF,n) is given by [28]:

T(F,n) - 2 krq~ )5,nw ek rq (W) F( s~5  ~ (4.151)

Combining (4.136), (4.137), (4.138) and (4.151) yields

Tf~) f( ,n,h) H n (XP e jhz dh

r _n _X)

jk2 r

'1 -j~n1T/ f(1,,n,COSO) rk 2r + .(4.152)

This completes the fundamental portion of the far field calculation.
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CHAPTER V

ASYMPTOTIC SOLUTIONS

a

A. INTRODUCTION

In the last chapter, all electric fields and impedances are exact

eigenfunction solutions since they are derived by the method of Green's

function which itself is expressed in terms of eigenmodes of the

dielectric coated cylinder. These eigenfunction solutions are employed

in Chapter IV to calculate the mutual coupling associated with

microstrip arrays. In many situations, however, microstrip antennas may

be used in the construction of phased arrays that are flush-mountable on

large cylindrical objects such as an aircraft fuselage or space

vehicles. The coupling between antenna elements plays a significant

s role in the design of these arrays. In such situations where the

cylinder is large in terms of wavelength, it is best to use asymptotic

high frequency methods, as opposed to an eigenfunction series solution,

to analyze the coupling effect because the eigenfunction solution is

poorly convergent. Moreover, the radiation mechanism is often obscured
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in an eigenfunction solution. On the other hand, the asymptotic

solutions are far less complicated from the viewpoint of computational

effort and cost involved. More attractively, the asymptotic solutions

may be interpreted in terms of ray-optics thereby revealing the

radiation mechanism involved.

Asymptotic high frequency solutions usually result from asymptotic

evaluations of the integral representations of Green's functions of the

circumferentially-propagating type. Section B will discuss the

alternative representations of the dyadic Green's function for the

dielectric coated cylinder. It includes the integral representation of

the circumferentially-propagating Green's function from which one can

derive the residue series representation that provides nice ray-optical

interpretation. Section C devotes to the derivation of alternative

representations of the mutual impedance z12 between mode 1 and mode 2

considered in the numerical examples of Chapter IV. For simplicity, a

two-dimensional (2-D) coupling problem involving two infinite conducting

strips is formulated and analyzed asymptotically. A numerical example

of the 2-D problem is treated in Section D. It serves to illustrate the

validity and usefulness of asymptotic solutions.

B. ALTERNATIVE REPRESENTATIONS OF THE GREEN'S DYADIC

Integral transforms, such as the Laplace, Fourier, and Mellin

O transforms, can be found useful in many cases in converting relatively

slowly converging series into much more rapidly converging ones. Upon
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examining the series associated with the dyadic Green's function which

converge slowly as the cylinder radius increases, it appears that the

Poisson summation formula, which is based on the Fourier transform, can

convert these poorly converging series into fast converging ones, at

least in principle. One form of the Poisson summation formula can be

stated as follows:

0I 2nr
, f(xn) = Z F(j) , (5.1)

where

' oo

F(_) = f f(v)eJ Vdv , (5.2)

and

f(V) = 2 7 F( r)e-Jd (5.3)
*I -=

form a Fourier transform pair, and a is a scalar.

The utility of the Poisson summation formula in converting a

slowly converging series into a rapidly converging one may be

appreciated from the properties of the Fourier transforms. If f(v) is a

function which is concentrated near v=O, then F( ) is spread out over

the a-axis, or has an appreciable value for a large value of E; for

instance, if f(v)=6(v), then F()=1. Conversely, if f(v) is spread out
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along the v-axis, then F(E) is localized near E=O. A slowly

converging series with a typical term f(an) is then converted to a

rapdily converging series with a typical term F(2nw/a), since F will

be small for large values of n while f(an) decreases slowly with

increasing n.

From Equations (3-123), (3-125) and (3-126) one observes that every

component of the Green's dyadic is composed of functions of the form

- f S(p,p', ,4 ';h)e
jh(z 'z ')dh

where

0--ge (p,'n,h)cosn( - ') -I -
S(P,p' ,4,,';h) = Z n P';h, (5.4)

n=O g( p,p' ;n,h)si nn(€-€')

with ge and g0 being even and odd functions of n, respectively. Thus

one only needs to consider S in looking for the alternative

representations of the Green's dyadic.

The series S in (5.4) can be rearranged such that

;: ? =gel p,p' ;n,h) -  jn(O-O'°)

S(pp',O,O';h) = e I e (5.5)

n=- "Jg°(pp';n ,h)

,'.*0
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In addition, employing the large order approximations of the cylinder

* functions:

1 ~ lezi
J V(Z) 2~ q j2v (5.6)

H z2 ; 2v
HV ()v~ ez (.7

V(Z

H V (z) -z \, j~(Z) ,(5.9)

with z,v being complex numbers, one can easily verify that both ge and

0are square integrable over the interval i.e.,

f eg(P-P';v 2) dv < -. (5.10)
co Igo( p~p';v~h) I

Clearly (5.10) also implies lg, g01+o as v+-. These properties of

boundedness warrant the existence of the Fourier transforms of gand

90 * Hence the Poisson summation formula can be applied to the series in

(5.5) to yield
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n=- -g -I :1n~

- e (p,p';vh) -i V( *2n7f~ ~ evI' d nv d

(5.11)

where

sgn(x)= 1 x< 0 (5.12)

Rearranging (5.11) will result in the following form:

00 9 (p p';n h
e e n'-'

n = - - -I~p; ~ h _

n (p,p';v,h)e
n=0 .. -jsgn(O-O')g IPP;vh

I V( Iit-d' 1+2nr), j v(2n- I ~'+2nw)

15 ±e dv. (5.13)
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The original representation which appears on the L.H.S. of (5.13) is

associated with the "radially propagating" Green's function. Whereas

the alternative representation which appears on the R.H.S. of (5.13) is

found in the "circumferentially propagating" Green's function which is

U particularly suited to emphasize the ray-optic behavior of radiation in

the shadow zone of the cylinder.

Since the integrand of (5.13) vanishes as v-- in the upper half

plane, the contour of integration (along the real v-axis) can be closed

in this half plane to form a new (closed) contour Cv, as shown in Figure

5.1(a), without affecting the value of the integral, or symbolically,

f dv = f dv. (5.14)
n=O - n=O Cv

It is known that the simple poles of ge or g form an ordered set

[V :Rev ,Imv > O,p=1,2,3, ...} in the first quadrant of the v-plane.
p p p

One can use Cauchy's theory to evaluate the R.H.S. of (5.14) to obtain

the residue series:

: I- 3-I
a go dRes[g (P'P';v Ph)]

I f dv j2n I e.. n=O Cj n=O p=1 -jsgn(¢- ')Res[g o(P,P ;Vpth)]

e- - jV p(),_-, 1+2nw) tejvp (2w-j€-fb' +2nn) - (515

- (515)

I_
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This residue series representation is important for analyzing the -

diffracted fields in the deep shadow region of the cylinder.

Physically, each term in the series, corresponding to p=1,2,..., can be

interpreted as a creeping wave mode that creeps around the cylinder n
jv p(s-'1+2nw)

times, n=0,1,2, .... The exponential terms e ,and

e (which corresponds to waves creeping around the

cylinder in the direction opposite to that of the former) become

exponentially decaying terms which attenuate faster as j@-Oj become

*] larger. Since Imv increases with p, the higher order modes are
p

attenuated very rapidly. So consequently one would probably need to

retain only the first couple of terms. In addition, for large

cylinders, the n=O encirclement is sufficient because contributions from

higher encirclements are negligible as the wave attenuates while

creeping around the cylinder. The exponential decay of the creeping

- wave modes on the cylinder suggests that energy leaks away from the

cylinder surface into the surrounding space.

Analytically, one may note that Imvp, p=1,2,3.... is significantly

greater than zero. Hence, contour C can be deformed in such a way

that, along the new contour CV,(Figure 5.1(b)), the integration variable

. - v always has Imv>>O thereby rapidly damping the encirclement terms with

n>O. Consequently one can write
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ImY

x

(a)

OD

1mb ~ UP

vRev

Figure 5.1. (a) Contour C., encloses the upper half v-plane which
contains the poles of gq or g0: V1 . v2,,,, V

(b) The deformed contour Cv also encloses all thC poles
of ge or 900
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g (p,p';n~h)

S q'I, gp;h h eI-±ev2w4tS

-jg(9 ) (p,p';v~ h Ie1)

e~i pvi e

Res [g (P.P';V ,h)]

jVP I

e +±e . (5.16)

The three representations of S in (5.16) are of different utility in

evaluating S. The elgenmode solution, the first form, is exact and

* suitable for small cylinders numerically. The remaining two forms are

valid for large cylinders. In particular, the integral representation

can be used when jt-t'j is small while the use of the residue series is
0o

most appropriate when 1 -t'j is large (in general, 1.-i" I>Tw, x' is the

free space wavelength).
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C. ASYMPTOTIC EVALUATION OF z12*1
As the radius of the coated cylinder increases, the asymptotic

* "expansions of fields and impedances are deemed appropriate. The mutual

impedance z12 between mode 1 and mode 2, both z-polarized as shown in

Figure 4.1, obtained in Chapter IV is an eigenfunction solution which is

not suitable for asymptotic expansion. It is desirable to derive an

integral representation of z12 via the use of the Green's dyadic of the

circumferentially-propagating type. Adopting the same notations used in

Chapter IV, the z-component of the surface electric field due to mode 1

can be directly obtained from (4.63) as:

- ~1 .
Ez (b- f ds' f dh I

itk2  S n=O
1U

jh(z-z')

£nW(n,h)cosn( -')Jzl(b,I',z') e , (5.17)

* where Jiz(b,4,z) and W(n,h) are defined in (4.76) and (4.85),

respectively, and

S1 = {1=(b,,z):-,1<¢, 1,-z1 zzl} . (5.18)

By definition,

z = Ez(h ,,z)j 2 (b,,z)ds (5.19)z12 2 2z

2
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where J2z(b,o,z) is again defined in (4.76), and

* bi,) 2c2 '2C t 2-9 Z2c-Z2  ( 2c+ Z21 (5.20)

* -Combining (5.17) -(5.20) one can explicitly write

W1 z + z
2 2c 2 2c 2 1 1
2 f dz f bdo f dz' f bdo' f dh e~hZ'

2 z2c-Z2  2ct2 -Z 11 -

* nW(n,h)cosn(-O)J(b '.z)J 2 (bz) *(5.21)

n =0

* Since W(n,h) is an even function of ni, it follows from (5.4) and

- . (5.5) that

- ~ ~c+2  ~'c~21 1jh(z-z')z12~ 2 f dz f bd J dz' f bdo fdh e
R k2  z 2 c -z 2c -02 z 0

W)~~ Jj~bO z') .z (5.22)

Carrying out the integrations over the variables 0,0',z and z' yields

Al2W(n,h) Ijn(02c+02) jn(02c-W1)
z 1 2  8  f dh Zj(h )Z2(h) n2  

1 e -e

-jn~l jn1
e -e 9 (5.23)
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where Z (h), Z=1,2, and A 12are specified in (4.81) and (4.83),

*respectively. According to (5.13), (5.14) and (5.16), z 2in (5.23) can

be written as follows:

A12  -o 0

12 8 f dh Zj(h )Z2 (h) f W(v,h)

F v + r 2 (v) r r3 (v) - r 4 (v) dv

A12  co
8 ~ f dh Zl(h)Z 2(h) I f W(v,h)

-CD n=O Cv,

r[ + r 2(v) - r 3(v) - 1 4 (v) 1 dv

IL
A12
8 j f dhZ,(h)Z(h) f W(v,h)

* -I0

r1v)+ 2(v) - 3 (v) - 4 (v)j v (5.24)

where

jv(l02c+ 2-O-jl+2nw) jv(21T-I02c+2.W1+2nrr) ,(.rl(v) =e +e9(.5

r 2(v) - e iv( t2c2+1+2n~) + e jv2rI0c ,012n (5.26)

r ()=e (tc 0-Ol+2 r j v( 2 w- 1 2c- 02 Ol +2n iT) , (5.27)

r (v =ev(I02c+ 2+li 1+2n r) + (1-I c 2 lI+nT)(.8
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and Cv is the contour enclosing all the poles of W(v,h) in the upper

half v-plane. The closed contour integral in (5.24) can be readily

evaluated by residue calculus to yield

j2nA12  _ O
Z 8 f dhZ1(h)Z2(h) . Res [W(v ph)]12= n=O p=1

I- -I
r(p) + r2( p) - r3 (v p) - r4 (vp)_"

j2irA12

- p=1

rj(p + r2(v) - r3(p) - r4 (vp) (5.29)

p 2v p p

As indicated in the last section, the alternative representations of z12

are derived on the basis that W(v,h)+O as v+-, and W(v,h) is analytic on

the upper half v-plane except at the poles vp, p=1,2,3,.... Also, the

approximations in (5.24) and (5.29) are appropriate for large cylinders.

It may be noted that the ray-optical interpretation of the residue

series discussed in the last section still applies here.

*_ As far as evaluating the residue series in (5.29) is concerned,

only the first creeping wave mode will be sufficient for reasonable

approximation due to rapid convergence of the series when the two modes

* are well separated (one or more free space wavelengths apart). As their

separation reduces, the series is becoming poorly convergent and the
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number of creeping wave modes will hence increase. Upon examining the

B complexity of W(v,h) (equations (4.84) - (4.90) with v replacing n), it

appears that there is no known way to locate the poles of W(v,h)

analytically. One needs to resort to numerical techniques such as the

m Newton-Rhapson procedure to find these poles. Such task is by no means

trivial. Thus, for small separations, it is more appropriate to

evaluate the integral representation of z1 2 in (5.24).

To demonstrate the usefulness and power of the asymptotic

solutions, it is best to consider the mutual coupling between two

infinite, z-oriented conducting strips on the dielectric coated cylinder

whose cross-section is shown in Figure 5.2. Strip Z, centered at = Zc,

9=1,2, with 1c= 0 , has constant and z-directed current J, i.e.,

J (F) = 3 (b, , z): = z 2 , l -cl< , IzI<, Z 1,2

S0 , elsewhere (5.30)

U
The mutual impedance z12 between strip I and strip 2 can be expressed as

02c" 2 -1 - 2c4 2 1 1
Z 12 f f E2(r)-J 2(r)dz = " E2z(f) 2b42 bd ,

02c" t2 2c" 2 (5.31)

where E2(r) denotes the electric field at the surface of the dielectric

coated cylinder (or rigorously at p=b+), and its z-component is given by
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CIRCULAR CONDUCTOR
DIELECTRIC COATING

STTRPP2

STRIP-x

Figure 5.2. Cross-section of the dielectric coated cylinder with two
infinite conducting strips.
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2F11jh2z-zm

E 02 () =- f bd 0' f dz' Idh ehzza

e. W~~~ono,- 2bi (5.32)
n=O

Making use of the results that

f e eh~z-z') dz = 2 re jhz 5(h) (5.33)

and

f f(h)S(h)dh =f(o) (5.34)

one can readily convert (5.32) to

3=- '2 W(n,o) jnol -jn~1  jnO
2z -Sk~ e -e e (.5

jk2t1 n=-=

Substituting (5.35) into (5.31) yields

12 2 2
1k2 102 n=-w nl

e~4c~-1 e (5.36)
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Next upon recalling identities (5.13)-(5.15) one will arrive at the

following representations of z12:

(J12 W(V'o)

Z12  2 16 2

Irl(v) + r 2 (v) r r3 (v) r r4 (v) dv

Sk j.2  I- Re-(po
82t0~2 n=O p1RsI~pO

1i1(v) + r2(vp) - 3(vp) - 4(vp)

I2 (537
V_

C.L p

*where rz(v), z=1,2,3,4, are defined in (5.25)-(5.28) and "p. p=1,21...,

are the poles of W(v,o) in the upper half v-plane.

As just explained earlier, for large cylinders, reasonable

approximation can be attained by ignoring terms which correspond to

- . creeping waves making n>O encirclements around the coated cylinder,
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C W- -a I.

2 W(V,O)I
1 2 162  f 2

~r()+ 2(v) r r3 (v) r(v dv

2 XRes W(vpo)
k2 Y~2 pV1 L

+ rv) - 3 (vP) - 4 (vP)

I 2 .(5.38)

Assuming "1=02 and then recognizing that

k2 - 2 -22

S 2 ~ 2  z 1 h 'r 2  th0(5.39)

expressions (4.86)-(4.90) reduce to the following simpler forms:

Xj(v,o) =k 2  /e r C~1 rI (5.40)

rSIvo) k (5.41)
vh=0
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xi
r( vo , (5.43)

H' (k b)

v 2

rV ~ ~ 7kb Hv/rka -~ b~/,.~)H(~k (5.44)

h0 Jvi('rk2b) Hv(/erk2a) -Jv(/crk 2a)H,(/crk2b)

and

Qul Ju(-rek 2b) Hv(vrck 2a) -Jj(/Trk 2a)Hv(yrek 2b)
TVa (5.45)
h=0 Jv(/-ckr2b) Hv(/-Ek 2a) -Jvt/-crk2a)Hv(/rk2b)

Then it follows from (4.85) that

JRk2  Hv(k 2b)
WIvro =5.46)

Hv(k 2b) + Zv(o)Hv(k 2b)

where

PV
-vh) r* (5.47)

* Employing (5.46) in (5.38) gives

~~~H(k 2b) 1 r(v)+r (v)-r (v)-r (V) I2dv
12 8irb 1 2  H~ H(k b)+ZV(O)H(k b) I V _Idv

where n2 fv-'2-e2 is the free space intrinsic impedance.
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It has been pointed out that the manner in which Z12 in (5.48) is

being evaluated depends on the separation between the two strips. The

quantity b 2c is a measure of separation between the strips. When bit2c

is small (typically less than a quarter of free space wavelength), the

integral representation Of z12 is most suitable. When b02c is large

(typically greater than a free space wavelength), the residue series is

* an efficient representation of z12. Each case is dealt with

specifically in the following:

Case (a): bl2c is small.

The exponential terms of the form eiv(2wr-iE!) in the functions

rRv),z =1,2,3,4, can be dropped without sacrificing significant

accuracy. Hence one can rewrite (5.48) as

T12H V(k 2 b) sinv 1  sinv 212 2
12 , o2 HV(k 2b)+Zv(o)H(k 2b) v COV 2 d

(5.49)

Letting aalrk2a, S n erk2b, and ratik2b, one may write

H v(k 2b)

H (k 2h)+Z (o )H(k b)
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H (1) (a)H(2)(S) H (1) B)H(2)(a)

[H(1)( )H (2) - H (1) )H (2)(a)

rV V

+ (H~1 j y)/H( 1 )(y)) [(1)(c) (2) (a ()H (2)(O 1

(5.50)

Noting that Q(v) is a slowly varying function, the contribution to the

value of the integral of (5.49) due to large values of v will be

negligible because the remaining portion of the integrand, i.e.,

sinvt 1  sin 2  ".,
V V cosv 2c, is highly oscillatory (and diminishing) for

large v so that the positive and negative parts of the entire integrand 2

tend to cancel each other. It is then clear that major contribution to

the value of the integral arises from small values of v only. In

Appendix J, the Debye's asymptotic approximations of Hankel functions

are employed to simplify Q(v) yielding

J 2  -k2sinF(v)

- Trb~ij 2  /C k _ (v/a) 2 cosF(v) -j/WT " (v/a) 2Z sinF(v)

sinv4 sinvl
1 2 (5.51)

V COS c 2 dv

where

F(v) = + V(cos v/a - Cos " ) .(2
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5 Introducing new variable W va and using the thin substrate

approximations that bt, 4=1,2, b 2c a02 b anaoe a

rewrite (5.51) as

k2 n2 sinF(aC)

0 2 2.2 2
-rk sinF(a;) + j £ k - cosF(ac)

sina$1I; sina 2C

a ocosa 2c; d; (5.53)

Recognizing that

2_ 2 2_F( v) =b C k 2 (v/b) -a lerk 2 (va) +

-1 ~I V
v cos /T a Co-

+ (b-a) jek;E t 2 2 (5.54)
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as a + while keeping t=(b-a), a ,, a 2 and a02c constant, one obtains

tim ~ rn si n (tv~k_____cot2~

JinaOs ininfC) 4o ~

a Ca2; cos(a 2c d4 (5.55)

which is the mutual impedance between two infinite strips on a planar

4dielectric slab (grounded), with widths 2a~1, 2a 2, and a 2c distance I

apart, just as one might have expected. (5-55) is the final form used

for computing z 12 when b12c is small.

Case (b): b1 2c is large

As just commented, z12 in (5.48) is most appropriately represented

as a residue series:

z 1
024~~2  P=1

_______ 1r (v)+r (v)-r (v)-r Mv

W (1) 2

(5.56)
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where -y=k2b, and vp, p=1,2,3, *.., are the roots of

HM) ( Y ) + Z (o)H ( Y) 0 (5.57)

In principle, the roots of (5.57) can be located by numerical

techniques. However, the problem of finding even the first root would

seem to be a formidable one. It is then most desirable to be able to

approximate these roots analytically.

In applications, the thickness t of the dielectric coating is much

less than the radius a of the cylinder. Thus it is reasonable to

assume

lpbi >> 1, Iub-vaj = lvtl < 1, (5.58)

u where the second inequality means that the dielectric subtrate is

electrically thin. Then, as shown in Appendix K, it is justifiable to

write

Zv(h) = t 't(5.59)

which is independent of v. In particular,

1 A
Z(o) -- k- = Zs (5.60)

So it is evident that the roots of (5.57) will be reasonably

approximated by the roots of
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YsH () (y) + H(1y) 0 (5.61)

where

Ys = SIZ (5.62)

is considerably less than 1 for thin substrates. Hence one would expect

the roots of (5.61) are just slightly perturbed from the zeros of

(1) (1) (1)'
H((y). It is known that the zeros of H (y) or H (y) when v -y

"* IyI large, are given in first approximation by the zeros of the

. appropriate Airy function combinations or their derivatives. This is

evident when one appeals to the Watson approximations [26]:

jw (o)

H 1 (, (5.63)
M/W

(1)' .jw()

Hv (y) 2- , (5.64)

where

y 1/3 k2b 1/3
Hm((y)~ , (5.65)

v-y v-k2b
a m m , (5.66)

Wl(a) = ,,'' (Bi(,) + JAi(a)) (6.67)

*with Ai and Bi denoting the Airy functions.
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Substituting (5.63) and (5.64) into (5.61) leads to

IS
(M)j w()- w 1(a) =0. (5.68)

It is derived in Appendix L that the roots of (5.68), when (Ys/m) is

small, can be expanded into fast converging series given below:

ap(d) t + d d + -d + -d +jyd

p 5
S -~ + 9 d + .. ,p =1,2,3 .. (5.69)

where

Ys lys 
-

d m i with «-I <1 ,(5.70)

t = e (5.71)
p p

and r are the zeros of Ai(T). The values Of Tare well tabulated in
p

Logan [29], and only the first few are listed below:

T, 2.3381

T2 4.0879

3- 5.5206

T4= 6.7867

T5-= 7.9441

T -9.0227

T= 10.0402
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It is clear from transformation (5.66) that the roots of (5.61) are

related to the 0 ,asflo:

V k b + m a~ p 1.2,3, .. (5.72)

-Next employing the Watson approximations (5.63) and (5.64) in Q(v)

* defined in (5.50) yields

jw (a)/(M/f)-

2r[Wf() - ZiW)

w1(a)~~ (a)() (.4

w 1 (, ~ m(5.75)

Singe (.7), sandsie the A y thatnta quto, .

W1(oa) 7 Wl() 0 1 a),p ,, . (5.76)

on a edl eiyta

)a ~ cw ()

0 Vw(a i~)M(.5



one can compute

a , * 1 Wl(ap) 1
- [Wl(a) - dWl(a)] - m 2  [ap- -] . (5.77)

_ - v_ V: or a=ca

U It follows from (5.77) that

1
Res [Q(v)] _ 1 1 • (5.78)

Making use of (5.78) in (5.48) results in the following residue series

representation of z 12:

n1
z12 4b4 1 2  p=1 *p- -] [p + k2b/m]

2

"rl(v p ) + r2(vp) - r3(vp) - ! 4 (vp)} (5.79)

Expression (5.79) is the final form used for computing z 1,.

Employing (5.46), (5.50) in (5.36), and making use of identities

(5.4) and (5.5), one can easily obtain the eigenfunction expansion of

the mutual impedance between the two infinite strips, i.e.,

in2  sinn¢ I sinn¢

z n= Q(n) n cosn (5.80)

Expression (5.80) will be used to check the results ohtained by (5.55)

or (5.79).
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D. A NUMERICAL EXAMPLE

An example of mutual coupling between two infinite, z-oriented

strips on a dielectric coated cylinder is presented to illustrate the -

effectiveness of asymptotic solutions. The antenna geometry and

pertinent parameters under consideration are specified below:

current on each strip - uniform, z-directed

frequency - 300 (MHz)

Xo (free space wavelength) - 1. (m)

radius of conducting cylinder - 5. (m)

*0 thickness of coating - 0.005 (m)

dielectric constant - 4.

loss tangent - 0.0001

width of each strip - 0.125 (m).

The mutual impedance z12 is a measure of coupling between the two

strips. It is computed using two different asymptotic forms, which are

the integral representation in (5.55) and the residue series in (5.79),

and the exact eigenfunction expansion in (5.80) as well. The magnitude

of z12 obtained using each representation is plotted against the

separation S between the strips in Figure 5.3.

It is clear from Figure 5.3 that the coupling between strip 1 and

strip 2 weakens as their separation increases. The integral
.O

representation agrees exceedingly well with the eigenfunction expansion

1.
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Figure 5.3. Comparison between integral representation, residue seriesand eigenfunction expansion of z12.
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for S<0.25X., and they start drifting apart for S>0.75)k, with the

former showing greater degree of coupling. This can be attributed to

the fact that the integral representation stands for the coupling in the

planar dielectric slab case in which no energy is shed into the

surrounding space by the surface field while propagating along the

air-dielectric interface, whereas in the case of the coated cylinder

energy is continuously dissipated into the surrounding space while the

surface field propagates around the curved surface of the cylinder.

Hence coupling becomes gradually weaker as strip 2 moves deeper into the

shadow region of strip 1. The residue series, on the other hand, shows

excellent agreement with the eigenfunction expansion for S>0.75xo . The

number of terms required in the series decreases as S increases. When

S=2X0, for instance, 3 creeping wave modes are used, and only 1 creeping

wave mode is needed when S=3Xo . In the other extreme, a total of 56

modes are summed for S40.25x o. It is quite apparent that a considerably

large number of modes will be required to provide a good approximation

of z12 when S=O. It may be noticed that the overlapping region for

these two asymptotic representations is 0.25Xo<S<0.75xo.
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CHAPTER VI

SUMMARY

Mutual coupling analysis is important in the design of antenna

arrays with low sidelobes, or where other tight control of the radiation

pattern is required. This work presents an analysis of the mutual

coupling between conformal microstrip antennas for the following

configurations:

1) rectangular microstrip patches printed on a grounded
planar dielectric slab (the planar slab problem), and

2) rectangular microstrip patches printed on a dielectric
coated cylinder (the coated cylinder problem).

It should be noted that the method of analysis proposed here can be

applied to microstrip patches of arbitrary shape; although rectangular

patches are treated for the sake of simplicity.

In analyzing the radiation or scattering from an array, one can

formulate the problem as an integral equation in terms of the unknown

currents flowing on the array elements. In the case of the microstrip

array, this integral equation would contain In it's kernel the grounded

185
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dielectric slab Green's function (planar slab problem) or the dielectric

coated cylinder Green's function (coated cylinder problem). The moment

method, which transforms the integral equation into a system of

simultaneous equations, is the technique proposed to numerically solve

this integral equation. In setting up the moment method solution, a

crucial step is the calculation of the self and mutual impedances

*between the expansion and test modes. The central theme of this work is

the efficient computation of these moment method quantities. A model

has been provided to relate the moment method modal impedances to the

port impedances of the microstrip antenna array under consideration.

For the planar slab problem, a moment method solution for

microstrip antennas using the rigorous grounded dielectric slab Green's

function has been presented. Piecewise sinusoids are chosen as

expansion and test modes. Good agreement between calculated and

measured values of mutual coupling has been shown. An expression for

* the far field radiation pattern has been derived via the method of

stationary phase.

It has been demonstrated that the coated cylinder problem can be

solved using two different approaches. The first approach utilizes the

Green's function restricted to the case where the currents are

tangential to and also situated at the surface of the dielectric coated

cylinder. The fact that the source is being introduced only through the

boundary conditions simplifies the calculation. This is similar to the

method of solution for the planar slab problem. The second approach is

186
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based on the dyadic Green's function for the dielectric coated cylinder.

The use of the Green's dyadic enables one to solve a larger class of

problems since the source can be arbitrary, and is not restricted to the

surface of the coated cylinder. For this reason the Green's dyadic is

employed in this mutual coupling analysis, with the idea that it may be

extended to a more general configuration later.

The dyadic Green's function for the coated cylinder has been

constructed using the principle of scattering superposition which

requires the complete expansion of the free space dyadic Green's

function. The structure of the free space Green's dyadic has been

characterized for a general orthogonal curvilinear system. It is shown

that the Green's dyadic can be cast in a form that consists of two

solenoidal components, and an irrotational component which has the

simple form of a dyadic delta function. This compact form permits one

to obtain the eigenfunction expansion of the Green's dyadic most

easily, since only the solenoidal vector wave functions are involved in

the expansion. This expansion process is further facilitated by a new

set of orthogonality conditions which do not involve the p coordinate.

Very general expressions for the elements of the impedance matrix

and voltage vector (in the moment method solution) have been presented.

Self and mutual impedances of an expansion mode on dielectric coated

cylinders of various radii have been calculated. The results converge

to that of the Infinite planar slab case as the radius of cylinder

increases, just as one expects. Mutual impedances, between two

expansion modes, on coated cylinders of various radii have also been
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.. .. . . ..- . .. . .7 . . . . . . ,"



computed. As expected, the magnitude of the mutual impedance decreases

as the separation between the modes Increases, or as the cylinder radius

decreases. Expressions for the far field radiation pattern have been

obtained using the steepest descent integration technique.

All of the above calculations for the coated cylinder problem are

based upon eigenfunction expansions derived using the dyadic Green's

function which is of the radially propagating type. These eigenfunction

expansions are poorly convergent when the coated cylinder radius becomes

electrically large. For large cylinders asymptotic high frequency

* .i solutions are preferable, because they are computationally more

efficient, and can be interpreted in terms of ray-optics. An essential

step in deriving asymptotic solutions for the coated cylinder problem

-"has been the conversion of the radially propagating Green's dyadic into

a circumferentially propagating type by using the Poisson summation

formula. Thereby alternative expressions for the mutual impedance

between two expansion modes have been obtained. These include the

residue series which lends itself to ray-optical interpretation, and the

integral representation which is in a form more suitable for asymptotic

evaluation. A numerical example of coupling between two infinite

" conducting strips on a cylinder with thin dielectric coating has been

*presented. This example serves to illustrate the validity and power of

asymptotic solutions.
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This work presents an effective approach for analyzing coupling

between conformal microstrip antennas by combining the Green's function

theory and the moment method. Only a narrow aspect of the coupling

problem has been considered. It is by no means complete. The following

areas are recommended for future investigation:

1. Extending the aysmptotic solution of the mutual impedance
between infinite strips to the case of finite length
patches.

2. Rigorous modeling of source excitation (which requires
the Green's function corresponding to source inside
the dielectric).

3. Generation of data on microstrip antenna characteristics
such as input impedance, radiation pattern and gain for
practical design purposes.I1
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APPENDIX A

nETERMINATION OF SPECTRAL FUJNCTIONS

* Expanding Equations (2.2) and (2.3) in rectangular coordinates and

making use of (?.4) and (2.5) yields the following:

* * In region 1 (dielectric),

Exl(r) = - ~aa
ay el+jwe1  a 4'ml

j-j(k Xx+k y)
4=,r fJ {k kj,1 - - k e ' sink Z (z+t)dk dk

(A.1)

-a 1 2
* ~ ~ y Eel 3'' + jwe1 IyUx *Mrn

-: - - *- ...L - j (k x+k y

= f II{k4, k k *I, } e yy sinkiztdk k

(A.2)
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E ZI(r) =w aI 2 + r ko] *1ml

i 2 2
x k y 4-si(k xx+k /)

=4712 1e c" cosk zi (z+t)dkdk (Ak3)

Hxlir) = i axaz *~el + ay 'ml

j cc Zj k x~-~ x+k *y)

Tr2 Wi el ky~m 1 cosk z 1(z+t)e dkd

(A.4)

- 1 32 a
jl j ww Yaz el a ml

jk k
+j co y z1 -j(k x+k),Y)

7-Teff k ximie x cnskzi(z+t)dk dkt

(A. S)

1 D2 2

ju 3z r o e

co 1 2 2 -j -(k xx+k~y)
41T ff (k + k) e sink, (z+t)dk dk~

(A.6)
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T T- - 7 7 1- .

In region 2 (air),

- a1 32
x~2(r 3y 4e2 + jw 2 axaz m

* j - .- kxkz2 - -j(k x+k yk)
4,2 JJki *+ e x yy

7
z~z dk dk

-. r 3'2+WC M x y'

(A. 7)

a 1 32
y2- ax e2 + jwc 2 lyaz 4'm2

q -j .- k kz? -j(k x+k ykz
412 If {k Xie2 *m2} dk xdk

(A.8)

E 2() e 2  + k )'e

4z2 yw Z e

12 3

Ik 2k2
x z2y -. -j xk kyy2Zz)

47r -f wc "e -k 2 e dk dk3',
(A.9f)

*3 a-.

H 1F?

x2 j~ ..l a .~ e2 + y
.- f - -- * .. . . . - . - . --0

k k



UHy2?(r) = yz 2 -

32xY2j~u w"I0 ygz e2 "3;x m2

k k I
J y z Y 2 z ~

A4 2 f wil e2 +kxOm2 e  dkxdky

(A.11)

1 2  2
Hz2 (r) J P o 3 2+ k 0 'e2

j (k2 + k2) -j( x+ky+kz)-2 f X "e 2 e x yz2 dkdk

(A.12)

Enforcing the boundary conditions at z=O (dielectric-air interface)

specified by Equations (2.8) and (2.9) leads to

Exi =F x2 at z= 0 (A.13)

E = Ey2  at z 0 (A.14)
yl 

(A 142,.

H H =J at z = (A.15)
x2 xi sy

-H + H = J at z = 0 -"
y2 yl sx (A.16)

Use of Equations (A.13), (A.1) and (A.7) gives
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kxkz2 ~- j -

yi ky e2 + *o m2 = Fky*el " wco Cr kxkz 0m 1  sinkzlt (A.17)

Similarly, use of (A.14), (A.2) and (A.8) gives

kykz2~jk-' [k +wOc kxkzl1m] sinkzlt (A.19)
*' k 'Oe2  eo *m2 : [k *el + Z1 '

Use of (A.15), (A.4), (A.1O) and (2.10) gives

~~ kkz ~~
I kk - kt

'il e2 - k 4 m2 ~ % 10  1 kY'Jmi Z1s~i =

(A.19)

Use of (A.16), (A.5), (A.11) and (2.10) gives

k y 2jk yk Z
- Iy +kp k _ +k coskt .j JO 0 e2 + x'm2 + , xel + l "'t Z sx

(A.20)

Adding (A.17) multiplied by ky to (A.18) multiplied by kx yields

2 2- 2 2
(k + k ) e l s inkz l

t

y )e2 (kx y1i

%'e2 :sink 1t el " (A.21)
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Adding (A.17) multiplied by kx to (A.19) multiplied by (-ky) yieldsj

(k' + k') k -jk
x y z2 -Z1 2 2.

(kk Z1~

4'm2sink zi m (A. 22)

Adding (A.19) multiplied by kx to (A.20) multiplied by (-ky) yields

k Z 2 2 k ZI 2 2
(k + k j~ -(k + k )cosk t *e, j[k J k J

W00 x y e2 W10 x y Z1 e y sx x sy

*(k 
2 + k2)
x y -3[k cosktjx'y kys

il Zizitel+ z2*e2 xy yx(

Adding (A.19) multiplied by ky to (A.20) multiplied by kx yields

2 2 2 2-

-kx+ k y)4m 2 + (k x + ky )mlcoszit -j~[k y sy + k XJ5 X

(k y mk L mlcoszlt] = ~ y sy sx] (A.24)

Using (A.21) in (A.23) leads to

'e = k~ D [k J k J .1(A.25)
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W iUosink zt

= 2) [kJ - k J (A.26)€e2 kx + k )De

x y e

where

De = k coskz t + jk sink t (A.27)
e ZI I z2 ZI

Using (A.22) in (A.24) leads to

*.-JErkz2r

-cr kz2

S 2 k2  [kxJsx + k J sy1 (A.28)
(kx + k )D

-k sink t
' m2 2 2 [k xJ sx +k yJy SY (.29

" D= ~ 5~ + k I (A.29)(k + ky)D m  \

where

Dm = r k cosk Zt + Jk Z sink Zt (A.30)m r z2 zi i z

0
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APPENDIX B

MUTUAL IMPEDANCE BETWEEN TWO EXPANSION (DIPOLE) MODES

In this appendix, the exact expressions for the mutual impedance

between two surface expansion dipole modes on a lossy grounded

dielectric slab are presented. The mutual impedance between an

expansion dipole mode and an impressed source current, required in

(2.46), will also be presented.

Figure B.1 shows two dipole modes of current densities Jm and Jn,

"' located on the surface of a grounded dielectric slab with parameters u0

and Crco. The ambient medium is free space with parameters Po and co.

Mode m is centered with respect to the (x,y) coordinate system. The

center of mode n coincides with the origin of the (x',y') system which

is displaced from the center of mode m by a position vector (xo,yo).

The x'-axis is at an angle a with respect to the x-axis.
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Figure B.I. Two expansion dipole modes on a grounded dielectric slab.
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The mutual impedance between modes m and n is given by

Zmn = - f E (ro+r').J (r')ds '  (8.1)
m n

Awhere the integration is over the surface of mode n in the z-0 plane;

and

r = XX + y'y' x(x'cose-y'sina) + y(x'sina+y'cosa) (B.2)

0 xx + +YYy 0 (B.3)

1.2

Without loss of generality, it is assumed that

Jm(F )  Xmx (r) + yJ (r) (B.4)

where F = xx + yy and

-A A

n(r') .(r'nx() + yJ (r') (B.5)

It then follows from (2.17), (2.18), (2.24) and (2.26) that, at z-0,

SE "~ - " e kxkz2 - "J(k x+k y0 )
i Emx(ro+r '  = lw.I 2 + , o *2 e  x Y°

mx o 2 [ky &2

Se l  '' ) dkx dky (8.6)
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E (r+r' = j - kykz2 j -(k x +k yo)
EMYr 0 r 47r2 ff [k ~ 2 - c *M ~]e K0y

eij(x,Y',a) dk xdk y(B.7)

where

2 2
k k k-k-k lI'k <0, Rek >0 8)z2 0oxy z2 ' z2(8)

(x'y'.= x'(k xCosa + k ysincg) + y'(-k xsina + k yCosax) , (B.9)

- wjosiflkzit
~e? (k+k~De [kJ .kJ ](.0

x ye MY y Mx

- -kzlsiflkzlt
&2m (k x+k2)D [kxJ my+ kyl .11 (3.

2 22 (B.12)k c ek-k-kzi r o x y

n k 1cosk 1t + jk 2sink ~ t (l.13

) c rk Z2 cosk Z1 t+ jZ1snZ1t(8.14)

-, ~J(k x+k
J m (k k ) JJmx (x,y)e 3 dxdy (8.15)
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r - -.

and

CO ~j(k x ,kyJ (k gk ) ff J (x~y)e dxdy (B.16)MY xy MY

Also one may note that the tangential component of E m(r 0+r') on the

surface of mode n is given by

-t -

E m(ro +r) xE mx(r +r') + yE MY(r +r)

x'[Emx (F +r')cosa + E myr +P)sina]

+ y'[-E~ (F +F')sina + E (r +F',)coscii (B.17)yo my 0oY

Combining (B.1), (B.5) and (8.17) yields

Zmn hn wn

Zmn _f f{[E (r- +r )cosa + E MY(r 0+r')sina]J x',y'Y)
hn -wn y

+ [-E (F +Fr')sina + E my(F 0+F')cosatjJ ny(x',y')Idy'dx'

Next let

Jnx'(k x ky ,a) = h fnW Jx'XY.) -M~x'"Y'c) dysdx.

hn wn

-fI f J x'",)

-jrx'(k cosct+k sinci)+y'(-k sinct+k cosct)]
*e- x y X y dy'dx'(R )
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and

J .(k ,k , ) f J ('y' )e 'dy'dx'fly x y flJy (

-hn -wn

-j~x(k cosa+k sinc1)+y'(-k sinct+k cosa)]
e dy'dx' . (B.20)

Use of (5.6), (8.7), (B.19) and (B.20) in (B.18) leads to

_ F k x kz2
ff~2I (ky + 4, )cosa

mn 4,2 e2 + e m2O

k k
kz sin J .(k ,k W
x e wco 4'r2) Jsna x y

k k k k
x Z2 y z2

- ky1 (i 1m2) si nc + (kx *e2 - WCO *Im2 )cosa

y~ ~ ~ e2+

J .(k ,k C)e 0 dk dk (B.21)fly x y y

The mutual impedance between expansion dipole mode Em and source

current Ji can be computed according to (2.46)

Vm E j (r) i .(r)dv .(B.22)
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Since source Ji is modeled as a vertical filament of constant current

S inside the dielectric, it can be represented as

Ji(r) = z1 iS(x-xf)6(y-yf) , -o<x,y<o , -tz'0 (B.23)

S

where Ii is the magnitude of the feed current and (xf,yf) denotes the

filament location in the x-y plane, with respect to the center of

mode m.

Making use of (2.13), one can write

2 2
- -j (kx+k) -j(kxX+kyy

Emz(r) W ff we I.,l e coskz (z+t)dk xdk
0 Wor mlz:-" (R.2P4)

Inserting (B.23) and (B.24) into (B.22) and carrying out the volume

integration gives

2 2
ojli G (kx+ky) -j(kxXf+kyyf)

mV m 472 - f f eorz i e sink ZI tdkxdky

(B.25)

In both (B.24) and (9.25)

~ = - jerkz2 ~ ~

•m1 (k2+k2)Dm [kxJmx + k J M] (9.26)
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APPENDIX C

EVALUATION OF AN OSCILLATORY INTEGiRAL BY THE

STATIONARY PHASE METHOD

This appendix presents the derivation of the leading term of the

asymptotic expansion of an oscillatory integral of the form

- 1 -jk-

E(r) = 4 2 ff f(kx ky e dk dk (C.1)xx y

where r xx+yy+zz; k= xk X+yk +zk with Ikl k k0  and f is a slowly

varying vector function of kx and k, and has no singularity near the

x y

stationary points of k-r.

Equation (C.1) is a 2-D Fourier transform which can be evaluated

asymptotically by the method of stationary phase. The method of

stationary phase, simply stated, is based on the fact that, as Inl

the dominant contribution to the integral in (C.1) arises from the

neighborhood of those values of kx and ky which make the phase k'r

stationary, i.e., k-r does not change for first-order changes in kx and

204

0. •

* * .*"



S . '-. J r- -. ; - ° - . - - - • - . , % . -, -, o , . - . -

ky. For those values of kx and ky that make the phase k-r vary rapidly,

the integrand oscillates rapidly between equal positive and negative

values, and the contribution to the value of the integral is small.

First it is noted that k k o -k and

0 ox y

- 2 2
k r = r kxsin9coso + k sinOsin + k -k -ky cose (C.2)x y 0 x y

where 0 and are the usual angle variables in spherical coordinates.

The stationary phase points are determined by a solution of

a -

.kr =0 (C.3)
x

3k k 0 (C.4)
y

Using (C.2) in (C.3) and (C.4) leads toI
kzsin9cos

kx = cose (C.5)

kzsinesin
ky cosa (C.6)

2 2 2?2Since k +k = k--k, it is seen that
X y O" Z
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2 sin28 2 2
k k -k- z cos2e 0 k° Z

and hence

k = k cose (C.7)

z oj

Substituting (C.7) into (C.5) and (C.6) yields the stationary values of

kx and ky given below:

k = k sinecos4 (C.8)xo 0(C)

k = k sinosino (C.9)yo 0 C9

provided 9 1 /2. In the vicinity of the stationary phase point

(kxo kyo) k-r can be approximated by the first few terms of its Taylor

series, i.e.,

k-r k-F+ (k k x + (k k )kr

l(kxokyo) yI (kxokyo)

F " -12 

S(k(o,kk) + (C.(k) -

(It should be noted that only the partial derivatives in (C.10) are

evaluated at (kxo,kyo).)
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It can be shown that

2

x k-r k k = -r cosS + LXk
x kX0o yo z lko, yo)

k ro~ (COS 2e+sin2 ecoS 2 )

2

Y f(k ,olk )o z - l~ ,0k )o

kfo~e~cos2o+sin 2osin2 )

- - kxky
kk A k - r coS9 k3

x kX0o yo z l kX0o yo

r
- -kcos si n2 esi n~cos

Consequently the phase can he written as

k-r k 0r -A(k X-k X0) 2-B(k Y-k yo) 2-C(k 4-kX )(k Y- k )y (C.11)

where
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1 2

X Ik ,k )
X0o yo

2 2  kor

(kx'kyo)

32

xo' yo

In the neighborhood of the stationary phase point f(kx,ky) is

slowly varying, so it may be replaced by f(kxo,kyo). Hence the

asymptotic value of the integral for E(F) is given by

E~)-f(k, ,k )e ...() X1yo 47r
0

iIA(k -k0 )2+B(ky-yk )a+C(k -k )(ky kyo)]dk k
*e x 0 y Yo xy Y kd

where R0 is a small region centered on the stationary phase point from

which comes the major contribution to the integral. As noted

A-previously, for large r, the domain of integration may be extended over
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the whole (kx~ky) plane without introducing significant error because of

the rapid oscillation of the integrand for nonzero values of (kx-kxo)

and (k -kyo). Thus

i (F) - (kxok )eO -jk r 12 7
xoyo 411 I

e o yy o yy dk Xdk

(C.*12)

Next, applying a linear transformation T defined by

F- -I FI
k s = S//A +kxo

*kyj t t// + kyo

to (C.12) yields

E(r) f~xg e j 1 7f ej[S2+t2+Cst/i/-B] Idet Jldt

f yoxowkyoCe T fJ e

- -jk r 1 c J[S2+t2+CSt//AB] dsdt
f(k xogkyo)e 0 2 JJ e /AB (C.13)

where

209



I"k x -kx - - --.
a l s at /A 0 I

"kT Iak = 1T is the Jacobian matrix of T.
s tky Lky

L--1 1 -

Completing the square for the s variable in (C.13) to obtain

-jk 0r Ct 2 C2

e 1 j[(s + Tr) + t 2(1 - -A
(F),k ) 4 lk 9AB/AB ff e dsdtxo yo W~ I

(C.14)

*i Using the result

-o ' cc a(u-u 0)2 /4
f e du= ae

in (C.14) gives

-jk r
0

xo, yo )  42 /AB e C2

-jk r
0

- e

4$fI.L

j.- - -X yo 2 /4AB.C2 (C.14)

It may be observed that
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r 20COS72 14 r2 Si

VAB 2 4 4k2COS4e (COS20+sin2Oo 2 )Co 2 +i 2 9sin 2 )
L 0

1/2

r 2o ~ -i45f2 C5f 1/2.
U 0

COS2 0 IcoS48+CoS2esin2e(sin2,+cos2, kos

Therefore, the leading term in the asymptotic expansion of the integral

in (C.1) is given by

-jkor
- jkocosO e

E(r) 2wr r f(k ,o'k y) (C.15)
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APPENDIX D

ORTHOGONALITY PROPERTIES OF CYLINDRICAL VECTOR EIGENMODES

Several orthogonality properties of the solenoidal vector

eigenmodes or wave functions in cylindrical coordinates are stated and

proved in the form of lemmas. For the sake of clarity, shortand

notations are introduced first:

1. Sn designates a "+" or "-" sign, n=O,1,2,... (0.1)

I-I m=n
mn = , m,n = 0,1,2,.... (0.2)

0 m*n

3. c 1 n=O (D.3)n 2 n 1

(D.4)

S)= (k- h2  ImX > O, --<h<-
0
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5. Aen rem IAen ren +Aon ron .. > (0.5)
o o LAW en .'

Lemmia 1

2n -Sn Sfdh' f dz f Pd [Aen P x V x MenX(h,r)]4rem Menixah,)
-e -Cc 0 0 0 0 0

Aen em X2 Sn (.xp) i- Z 5 xp) a
c n eni0 mp0 n ap m mn

Proof:

Substituting (3.46) into the integrand furnishes

L.H.S. =f dh' f dz f pd [Aen .(2n(,p Cs
-~ -~0 0sn

zSmwocosm e hh)
*[remiTP(*) - a m sinp

0

-f dh' f dz f pd {[Aen csi n~[em sini
-Ce -00 0 00

XSn (x)- Sm (plej(h+h')z
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One can observe that

2wrh f ~ [en sinIre sin0 0 0

2nr
-Jd [Aenrecosn~cosm + A r cosn~sinm* + A r sinn~cosm

0eemen am on em

+ A onr asinntsinm~]

27r A rn=ni=O~ en ren

-[ nr en+A onr on nm*

n*m

A en rem 6mn

and

* * ~ dz ej(h+h')z= 2nS~(h+h') .(.6

Thus,

41r2  Sn 3 Sm
L.H.S. f dan { - Aenre Z (xp) - Z (W0p6mnl 6(h+h')

400 n 0

e n gflmP 2Z (p p ~m (X)mn
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Lemma 2.

fdh' f dz f pd [A XV Nenx hr)Irm N .h.
2w en x -Sn -].r Nem~mh,

-CO -W 0 0 0 0 0

Aen em Sn (p (p
p~~~3 n Ae re x)Z mn

n 0 0

Proof:

The proof is similar to that of Lemma 1 and will not be

repeated here.

Lemma 3.

0 co 21r -Sn
f dh' fJdz f pd [Aen P x v x MenX(h,F)I.[rem NemX-(h',F)1 0

co -o 00 0 0 0

Proof:

Substituting (3.46) and (3.47) in the integrand yields

00 271 X2n pcos
-L.H.S. f dh' f dz f pd {Aen[- n2  sinp)

-00 -00 0 si

~jhn Sn sin
-P Z n Cos~5 ~]

Lr0 p*; Jh'M Sm sin MO X2 Sm ,Cos
Jre[P()T kp ZP zM m)CO Z k Zm (X. sin m t

ej(h+h')z21

121
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Making use of (D.6) it is clear that integration on z produces the delta

function 2w6(h+h'). Hence,

L.H.S. 2 2n ow {remn osnn [;rem
( dh'6(h+h') f pdo [-e sin Cosi*

-~0 0 0

jA~flm Sn Sm

0

Iensin n Cor s j(X-)2hn Sn (X)Sm 1
+ [AnCos no][em sin m k P n(X)zmX'I

Clearly L.H.S. 0 for n=m=0, and n~m. When n=m*0,

27r
dfd -A si nf[;e CAr consno]-AnocsncsO+Anrnsn~i

0 00

f dA r sincosno] = ir[-A r cstn + A r pnoinnn en on onenn

Similarly, it can be verified that -

2wsin Cos
f. do [;-Aen Cos n. I[ren sin no 1 - en A on + Ao n
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F I=O ~

00jX 2h'n j)X' 2hn

2w?(-Aenro+An en f dh'6(h+h')[ op-

L.H.S. -OSDS

Zn (X)n(X)

0Ofor all m~n

Lemma 4.

W o 21T -Sn Sf dh' f dz f pd iiAen P x 7 x NenX(h r)]'[rem MemX-(h. r)) =0

-00 -00 0 0 0 0 0

Proof:

*After substituting (3.46) and (3.47) in the integrand one will see

L.H.S. =f dh' f dz f pd4o {Aen[-z(*)flsjrem[TP(*).W()]} 0
-do -00 0 0
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APPENDIX E

PROOF OF EQUATION (3.73)

The proof starts from Equations (3.69) and (3.71) which are

relabelled here for easy reference:

7x~xG el(r,r') k- kG el(r,r') =0 '(E.1)

mlxj(-.' (r ,r') =0,(E)

wher e l, 1 eV. and k, Lo vie w vi e er Taking the curl of

(E.1) and then subtracting it from (E.2) leads to the conclusion that

Gmi(r,r') =7xG el(r,r') + *(r,r') (E.3)
er7

where satisfies the same differential equation governing Ge and Gel m1*
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Next letting E1and H 1be the electric and magnetic field in Vt

respectively, due to electric current source J in V 2 (with

parameters P12 and e.), it can be shown that [19]

Er)=ji G (r,r').J(Fr')dv' (E.4)ju)P2 el

From Maxwell's equations, it is clear that

- - xE1(r) V.2
Hj(r) f ~ VxG 1 (F ,F')J(F'i)dv' (E.5)

V2

U However, in order to be consistent with the role of the magnetic G~reen's

dyadic defined by (3.18), GmI must be sought such that

H1r f ml (rr).J(r')dv' .(E.6)

Substituting (E.3) into (E.6) yields

H r [7xG (r,r')+ip(r~r')1.i(r')dv' .(E.7)

V el
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From (E.5) and (E.7) it is seen that

pr, r') 1) - x 1r~ (E.8)
P el

Using (E.8) in (E.3) gives

-- 112

G VG irrl (E.9)
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APPENDIX F

DETERMINATION OF THE EXPANSION COEFFICIENTS

The Green's dyadic Ge for region V=V1UV2 is represented as

Ge(r~r') =U(p-b)Ge2(r r') + U(b-P)G el

U ~+ G2  , +)G + U(b-p)G r r')

r e V, F' C V2  (F.1)

From (F.1), (3.87) and (3.88) it is clear that

G (e2-' =G(r)[gr,r) + Grr)

pb b<<P

co n=000

d~~h,) k2 [NnX(h F)+CenNenX(h,r)+DOMnx(h,r)

0 0 0 0 e e

NebX(p' *) (F.2)
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Likewise, from (F.1) and (3.89) it is clear that

Ge~rr)=G 1 (rr

p=b- or p=a lp=bV or p~a

8,. f dh I X2 {[cenA~nu (h,r)+ a ~ (h j )
8i ~ n=O 0 o

+ Yen eno(h, r) + Tr N0  (hr] enX(-hg'
0oo e e 0

+ aen Nen (h,r) + b OnM On (h,r) +den Nenuj(h,Fl)
0 e ~e + 0 C

+ fonMo ~(h,r)Nenx (h,r)}

e p e H P=b- or p=a (F.3)

These 24 unknown coefficients (Aen9 8ent Cen * Dent aen, Sent Yent 'Tent
0 0 0 0 0 0 0 0

an ben' gdn and fen ) are being determined from the 24 linear equations

derived from the following set of boundary conditions (as defined by

Equations (3.82) to (3.84)):

pxGei(r,r')1 el (F.4)

p x Ge2 ~ r'p x Ge (r,r')j F5

1 I p~b + p~b
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P e2x (r r P X -Vx G (r,r' (.6
p=b+ p 2  b(-6

*W Furthermore, it may be helpful to recall the explicit expressions of the

M and N functions which are given below for the sake of convenience.

-+I n t + Cos Ijhz
4 MenX(h~r) z p Z(p)Cos n. Z OW-~ i n* je

- (F.7)

- jh3 a (p t Co jhn + in

0e x h r = " n sin n n*- Cos

S A + Cos n~1jhz(F)
+ z ~Z( XP) sn e(F8

where Zn +(Xp) HM n X) z X)nX and X ,0- ImX>O. For

simplicity, H~l1 (Xp) will be denoted by H~ (Xp). and f(E) by f'(E)

- throughout this appendix.

Substituting (F.3) into (F.4) produces, for n=0,1,2,...,

K AP Xt~nM~(h,r)+Bon (h,)+Yenme~ onhu~hr)) =

0 0 e eU 0 o e e p~a

(F.9)

1. 223
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(h,)+ (,F)+deN (h,F)+f M-;(hF)]

oe o enOo e ni O n

(F.10) I

Using (F.7) and (F.8) in (F.9) and in (F.10) yields, respectively,

jnh Co s*~ ~ zl ceHn(ma) + Yenjn(pa)] H [~H(va) + Ton(pa)]}i n
o 0 e e

ejhz L2( ) si n jh 0

1 e eco

(F.11)

and

z{IJ[bnH (ua) + fondn(Pa)] a H nh) denJ(p~a) ]}51  n

e e k1 0 0 O

ejhz + H p)dJ(a]Cos n ejhzI=0
e * ~aen n u)enJ nia sin ~ 0

0 0

(F. 12)

Next substituting (F.2) and (F.3) into (F.5) gives, for n=0,1,2,..,

P x [menX(h,r)+Aen MnX(h ,F)+BOn n X(h,F)] b -

0 0 e e 0 0 e e pb

(F.13)
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and

00 0 e e p~b+

0 0 e e 0 0 e e pb

(F.14)
*Using (F.7) and (F.8) in (F.13) and in (F.14) yields, respectively,

jnh Cos

0 2 e 5f

+ ,{- AO B0 H(bs n j fl, Z{u[*n H(ub)+Yenj(lj'~
2 e 0 0

jnh M
~~ 18~(ub)+T~n~bj l { H [oH(pb)
1 e e sin 1 e

+ TOnJ n (b)'c~ nl (F.15)
e

and

nh sin
I-)O n i-l H(xb) k [ Jn (Xb)+Cen~In(X]Cos n

e 2 0
A AX2 jnh

+ *{.J n(Xb)+CenH n(.Xb)j k~ sn~ = Z{IbonH n (ub)+fonJn kb)] b
0 k2 sne e I~

*an n (pb) + denjn Cos)3 k~ + [aen Hn (ib) + denjn (ub)]}Cs .
0 0 10 0

(F.16)

*Finally, substituting (F.2) and (F.3) into (F.6) gives, for

P enXM(h~r) + AenvxMenX(h,r) + BonvxN~nX(hr) +

2 0 0 0 e e p=b+

P XF{~nvXenuh~r + on~Non(h,F) + ye7Kenu(h,F)

e e pb
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W. -7--. i

and

P 7VXenX(h,r + Cen9Xexhr DOnVx onX(hIr)}
2 0 0 0 e e pb

1 -+ . (hr+ +d-N hr

x L X JaenVxNentu(h,r)+ oxon(r)+dnxnuh)
10 0 e e 0 0

+ fOnvxMOnv(h,r)} (F.18)
e e ~pb-

Employing (F.7) and (F.8) in (F.17) results in

PaXb jnh [ X)Annxl sin n{ Jk2XBOnHn(b b [n(X)An (bICos r
P2 e 0

+ -X. 2 [j (Xb)+AenH n(Xb)]~ sn~ = zlklp[ BonHn~u)Tnnu)
U2  n 0 e e

jnh sin
T IHgnfin (b)+yenJ n (ib)]}cos nf

Cos
+ 1-41enH( ub)+Yenj( pb)}in nj (F.19)

0 0

and

Hi (Xb) jnh Cos n
z - k2X[J (Xb)+Cen n(X ~ ± Dnnb)sin n

1.120 e

+ * -- X2D nHn(Xb)}cs n z{f-klvaen H(I.)+denjn( ub)l
e 0 0

n h Cos
[b~ LoHnh)fnnb]}n n.
e e

+ ;{..p2[b H (vb)+fnn JCvb)]}ln n (F.20)
e e
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For n=0,1,2,..., (F.11) must hold for all * and z, thus one can conclude

that

-,onHn(a) + TonJn (a) = 0 (F.21) -

e e

0enHn(na) + YenJn(Ua) =0 (F.22)
o o

Using the same argument one can see from (F.15) that

jnh jnh
.enuHn(pb) + Yenjdn (pb) T $On k b H(ub) b pon (ib)
o 0 e e

,jnh L
- AenHn (.Xb) - Bon k b Hn(xb) = nJ (xb) (F.23)

o e 2"

512 V2  X2

Bon kj Hn(jb) + TOn k, Jn(ub) - Bon k Hn(Xb) = 0 (F.24)
e e e 2

i-p

Similarly, (F.19) implies

jnh jnh
a-* n H (b) + Yen b en (eb) nkpH n (b) T TO n i"b)

U1 jnh u , u1 jnh
Aen 2 Hn(Xb) + Bon *2 k2zHn(Xb) = : b (Xb)
0 e'1"2"

(F.25)

-enu2Hn(ub) + Yen;j2j U U2 2- n 2= 21(nb) n (F..6) .
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A second group of equations corresponding to (F.21) - (F.26) can be

similarly obtained from (F.12), (F.16) and (F.20). For each

-: . n=0,1,2,..., and for all 4, Equation (F.12) implies

aenHn(pa) + denjn(ua) = 0 (F.27)
0 0

bonHn(pa) + fonJ (ua) = 0 (F.28)
e e

Equation (F.16) implies

jnh jnh,
den k b Hn (ub) - bonuH(ub) T den k Jn(h b - fo-lJ (vb)
o n e 0  n e n

j nh , jnh
+ Cek b Hn(nb) + DonXHn(b) = k k7 J(Xb)

o 2 e 2
(F.29)

I2  V2  X2 A
aen Hn(b) + den  - Jn(ub) - Ce - Hn(Xb) = J (Xb)
o o n k, mn J,,(Xen k ,b) e n k n

(F.30)

and (F.20) leads to

- -bnjnh , ± jnh
aenkPHn(ub) b b H (ub) de k14J (ub) fon W Jn(ub)

0 e 0 e n

Pii u jnh ul
+en v2 k, (X, D H b) = " - k2 'Jn( b) (F.31)

e I2U2
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IJ2Hn (pb) + fonP 21 0 Don )- HX) (F.32)
e e e

From (F.21) and (F.22) it is obvious that

Jn(p~a)
Sn H(1)O

Jn(iia)
afl H'(pia) le
0 n o (F.34)

and from (F.24),

Bon = -kt, [$OnHu) n TOnjn(U) 5
e 1 n' e ~ e

*Equation (F.35) can be used in (F.23) to obtain

Ae ~ = 'Xb -J (Xb) + ~ c~H (pb) + Yenjn (pb)]
o0 0 0

n h .1
± ~ - 1) [8n(b) + Ton (Ijb)]} (F.36)

Ie e

r7 Next one can obtain from (F.26) that

1 P2 U 2

Aen [ n(b -J (Xb) + H HeH(b) + Yenjn(jib)] (F.37)
0 n X) n U 10

and
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•-1 jnh jnh U 2
U2  b tAenHn('Xb) + J (b) = (-) nHn(ub) + YenJn(Ub)]o1 [e n b o" i~

0 0 0 (.8

One can also rearrange (F.25) such that

U1  ' Ill jnh jnh

D-- Bon U2 k2;Hn(Xb) = b [Aen H (Xb) + J (Xb) bb)
e 2o "2 0 0

+ YenJn(Ub)]+ kl[BonH(b) + TOnJn(pb)] (F.39)
o e e

Combining (F.38) and (F.39) together leads to

* 1 P_2 k, jnh u2

Bn = Hn'(b) - { O [eH n(ub) + TonJ (ib) w kb (
- - 1)

e n2 en e k2b

"- en n(Ub) + YenJn(Jb)]} . (F.40)
0 0

Equating (F.36) and (F.37), then using (F.33) and (F.34) yield

J' (va)
S112 11 2 n

H (Xb) {'Jn(\b) + (-) [Jn(Ub) " H (ua) Hn(ub)]Yen}

J'(ia)
1 , ' n_ , jnh 1 iu2

- H'n(Xb) {-Jn(xb) + x [d n(ub) "Hn(ua) Hn(Ub)]Teno a - kibx

J (pa)n
[J(Ub) - H (ub)

* e

which can further be rearranged to get
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- - - 7. ..--

J'(pa) Jn(ima)I'- nl S n 2 ]P e {n H Hn(ub)Hn(Xb)- H (ub)H (Xb) P2
X -fen n n nua n n 1

+ Xn (ub)H(b) - Jn(ub)Hn (Xb)} = dn b) HnXb) - d('b)Hn(Xb)

! jn(tia)

jnh 1 2 n-+ kz-[--b- X 11[Jn(ub) - Hn(ia H(ub)]Hn(Xb)Tn • (F.41)
-n e

Making use of the observation that

- nb)Hn(b )  J (Xb)H (Xb) = j2

nx)Hnb n n irXb

Equation (F.41) can be used to express Yen as follows:
0

Sj2 1 Xi T (.2

n rtb X OniYen - iub X0  oT (F.42)
o o 0 e

where

X [-- (b)H (Xb) - (b)H (Xb)]

J' (ua) -
. n W -2 ,H'(a )  [ -Hn(b)Hn(xb) 'n(ub)H (Xb) ]  (F.43)

jnh I 1 2 JnaN
X= k b -Il J(ub) -H(ua) Hn(ub)jH(Xb) * (F.44)

I n Hn iia n
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Next equating (F.35) and (F.40) and rearranging gives

2

[BonH (ub)H (xb) + Tondn(Ub)Hn(Xb)]
k1 e n ne

P--I = kl nH n (Ub)Hn (Xb) + TOnJn(Ub)Hn(Xb)]
-; = e "e

jnh kjii p 2
+[Li) H 1 n~n(Vb)H (Xb) + YenJn(Ub)Hn(Xb)]}

0 0 (F.45)

which can further be manipulated by using (F.33) and (F.34) to give

0 J (Pa) -
•n k2  2 P L 2 ,2-;[~~~~~ -p) --H (b H bb Tn- -n H(pa) k H(b)H(xb) (uIb)H(Xb)]T

"- U,'.-'
ki X n n ul n n eO

k2 2 11 112
+ [(-) " J(Ub)Hn(Xb) - J- j(ub)H (Xb)]TOn

J(Pa)U2 jnh 2_. n i 1

-+ k1b [X) - 1][Jn(ub) -Hn(ua) Hn(Ub)]Hn()Xb)Ye n  (F.46)
0

or

(X2-X3 )TO = O X4Yen  (F.47)

e 0

where

k 2 2 P P2
X2 -) J n(b)Hn(Xb) - J ( b)H (Xb) ]  (F.48)
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Jn(va) k2 2 2 '
A3 Hna) [(k-) " HnGib)Hn(),b) H H, (Hib)Hn(Xb)] (F.49)

J' ()a)P2 jnh 1 2 n

X4 - k- - 1( ) - 11[J (ub) -Hn(ua) H(Uib)]Hn(Xb) (F.50)
P1 k1b jj xn *(ia n

Finally, using (F.42) in (F.47) yields

[X2-X 31TO n = X[ b 1 Xo n or
e irbu~ Xo n ~l

e2 XO e

=On 1bp X0 x  _ (F.51)

I x0
T' an X3 have

Up to this point, coefficients cen, $en' Yen. Ten, Aen and Ben have
0 0 0 0 0 0

been determined. The remaining set of undertermined coefficients
consists of a en' heb denfand D and will be found in a

o en, en, en' Cen en
. similar fashion as the previous set.

It is clear that (F.27) and (F.28) give

dn(via)
aen Hn( a) den (F.52)

Jn(ua)
bon H(wa) 'On
e n e (F.53)
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From (F.32), one will find

1 iP2  u2
DOn = (xb) - ( ) b H (4b) + f nJn (1b )

e n e e

J'(ua)
1 02 0 2 n
(xb) - ) [Jn (ub) - Hn'(Ia) Hn(Ub)]fOn (F.54)

Hn e

and from (F.29)

jnh jnh
+ k b j n(xb) +CenH(xb ] : k [aenH() + dena(ube]

2 o 1 0 0

- ([bonHn(4b) + ond(wb)] + DonXHn(Xb) (F.55)

e e e

But one gets from (F.30) that

jnh jn h v 2

k b [Jn(Xb) + CenHn(Xb)] =ky (k ) [aenHUb) + denJ(ub)
2 0

(F.56)

Employing (F.56) in (F.55) results in

Do 1 Hf (Lib)]
Don = H'(Xb) X {[bOn (njn ) + fOn nUb)]
e nen e

jnh 1 2 lg~kb W (  - IenHn] (ub) + denJn(ib)]} (F.57)

2 0
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Next, equating (F.54) and (F.57) and making use of (F.52) and (F.53)

produce

J'(wia)
1 W.2 W 2 n_
H Xb ~(..) [J(jib) HH1'ia Hnpb)]fOn

H (Xb) [Hn'n(a) n (eb

J ua)
X-p I(' IJ (ub) --- ( ub)]d

Hn a) ne

n 0

which can be rewritten as

fon X0 iden (F. 58)
e 0

One can readily deduce from (F.56) and (F.52) that

1 k2  u2  n ua
Cen H (Xb) {-J n(Xb) + kj (X L [n~i Hn~a HIb)]en}

Also, one can obtain from (F.31) that

'I jnh 1P2k pCe 7 H k H(Xb) - k X{Ji(Xb) AD -DnH~ ) + -

P2o 1.12 n b k2X e~~ ul k2 X~

1 aenHn(pb) + denjn(wpb)] lb H (pb) + fondn (ub)]l
n jI k2b X LOn n

(F.60)

935



-- 4

S Making use of (F.52), (F.53) and (F.54) will reduce (F.60) to

1 , 42 inh i IL 2
Cen H'(xb) {-n(Xb) t [ k2b - 1]
0 n

J'(iia) uJ2 k1iu
Li (VD) H (pb)]fon +

'(Pa) n Iii k2o

(pa)

*'n (ib) -H (a) Hn(jib)]den (F.61)
n 0

Now if one equates (F.59) and (F.61), makes use of (F.58) and observes
a j2

that - n Jn(Xb)H n(xb) he will find that

k , X j2

k 2  {X2 X3 + den =b

or

j2 k2
den b (-) - X•(F.62)

X2 X +
3--- X0

So far all coefficients have been determined. However, they can be

simplified significantly. To facilitate the simplification process,

it is convenient to define
.m.

j3 (pa)
n

Pn H (va) (F.63)
n
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J1 (ua)

q H(pa) (F.64)

H' (Xa)
n

r ~(a (F.65)

n in (pb) p n H n(jib) (F. 66)

=n Ji n b) + q nH n(iib) (F.67)

S = (pb) + p H (ub) (F.68)
n n n n

and

n n n nib) + q H (pb) .(F. 69)

Then it can be shown that

P12
X0 = LQn + l rn rlTJH (b) (F.70)

kn i -M 1]Hn(Xb)S (F.71)

112 sk 2
2

1
X2  --- J (pb) + r rn(uib)]Hn(xb) (.2

112 k

x H (pb) r H rnn(lb)]Hn(Xb) (F.73)

2
x2 X = 1-T 02 (VT + 2 r S )nXb) (F.74)

jnh M2 [u 2 Hn(Xb)
= 4 [(i) P1 1] 0 (F.75)
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1.12 nh 2 1 2 2 2
Xx4 = x ~[i 1] H (Xb)S T (76

x (X2- 3 + x1 4 = (

112 uJ2  U12 k2 2 2
= -V + r T.r r- rS

nl n l X n n1ifl i vpf + 'ki' x n n

112 (nh 2 V2
P1 7(~) [(x)- ST , (F.77)

x
j2 4

0 r (xO(X 2-X3)+XIX4)

2nh P12 n H(Xb) ________

nklb 2 P1 U2)- ]1 [H n(Xb)/u]Tyn =±n

(F.78)

2nh 112 u2 T_ _

= r~2  H~)[ y (F.79)

(2 x3) j2 r( 2-X3
Yen i= pu~~,.2 rX( =r iX)zY(x0(x2-x3 )+x 1x4) =Hn /irbuy j
* 0 1 n f l - I(F .80 )
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I

j2 L 2 k2 2 1
) Yn = b p [-I Pn k (k1 x rn n] Hn(Xb)Yn  (.1

" en = qn n (F.82)
0

Ben t Pn Tn (F.83)
0nf

Aen A-"A (F.R4)

n

n (Xb) mIU( 8n I2 11 2 Tn "

. An Hn (xb) X - ')T Hn(Xb) Yn (.5

Ben t Bn (F.86)
0

k2  u 2 SnTn
Bn = ) ') Hn(xb )  (F.87)

j2 k9  1 PXo
den =Trb l " [Hn(Xb)/u] 2 yn = dn  (F.88)

U2  12
j2 k2 [-uOn + (P'-) X rn Tn]

dn = b kl H n(b) Yn (F.89).-.''

Ft ,

aen = Pndn (F.90)
0
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- r - rrrW. W. .V

x

j 2 k2  11

j 2 2  1 L jh 1 21
nb (kl) ii~ b p (X2- 1)H n(xb)S n] [H (xb)/p~]2 y~

2nh k2  Sn
= ± (ki) ['-(X) I Hn(.xb)Yn, = f n (F.91)

?nh k2 P 5n Ill k2

be q nf n(F.93)
0

Ce Cn (F.94)
0

I' (xb)
1 n Hn( b + k X H 4X )(F.95)

and ~

Il 112  Tnf,,
Den t ) -

0 I2 X H Ab)

2 Tn k.1 2 n

0k 2 -

H~b) DgB1 (F.96)

240



APPENDIX G

ON THE FUNCTION Vk2 h2

In solving electromagnetic problems that involve Fourier integrals,

one will encounter a multi-valued function of the form

f f(h) _ - 2 (G.1)

where k = k'+jk" is the propagation constant and h = h'+jh" is the

integration variable going from -- to -. In addition, one may notice

that k'>O and k"><O for the eijwt time variation. To ensure convergence

of the integrals one often finds it necessary to enforce the condition

that rr

Imf(h) >< 0 (G.2)

for the e j-'t time dependence. It turns out that condition (G.2) will

define the path of integration.
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Letting f(h) T '+j-r", it is apparent that

f 2 (h) =kz-hz ksz-km 2-hZ+he12+j2(k'kH-hhl) =T'
2 -T" 2 +j2T' T"

(G.3)

Equating the imaginary parts of (G.3) gives

=k k"-hoh" (G.4)

Next, equating the ral parts of (G.3) and then employing (G.4) yield

T2 koklo-hlh" 2 219

TI~ ~ 2 - -k" 2 -h' 2 +h" (G5

which can be readily solved to obtain

kl-k2h2h22 2,1/2
T, 1 2 J (klk"-hoh") J

k I 2-kh12 -h02 +h" 2  1/2

+2 (G.6)

It is clear that T' is always positive. Making use of this fact in

conjunction with (G.4) leads to the conclusion that

1. for T">O on the path of integration (e-jwt time dependence),

0 one can set h"=O when k">O, and hI><O, h"<>O when k'=O;
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2. for T"<O on the path of integration (ej~at timie dependence),

S one can set h"=O when kV<O, and h'><O, hse<>o when V"=O.

Typical paths of integration, each denoted by r, on which T">O and

T"<O when k'O are shown, respectively, in Figures G.1 and G.2.

-
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1mh

b- PLANE

-k -

BRANCH CUT

S0 ON ENTIRE TOP SHEET

Figure G.l. Path of integration r in the h-plane and the analytic
properties of~ h when V"=O (for e-jwt time dependence).

-k

SBRANCH CUT

0( ON ENTIRE TOP SHEET

Figure G.2. Path of integration r in the h-plane and the analytic
properties of Vk2-h2 when V'=O (for eJ~t time dependence).

244

M



APPENDIX H

ON THE RATIOS Pn/Sn AND On/Tn

From Equations (3.11) -(3.14) and (3.116)-(3.117), it is apparent

thata

P~ (u) J (pb)H (pa)-J (va)Hn (vb)

(H. 1)

S n (W J n (iib)H n (pa)-J n (ua)H n Cub)

and

On (11) n (jib)H 'inAa-J n(pa) H (b

- a a .(H.2)

T Cu(1) J n(1ib)H nCua)-J nCua)H n(jib)

Since H ( H ()r J M~ + jY (M, where Y M~ is the Neumann
n n n 'n

function of order n, one can rewrite (H.1) and (H.2) as follows:

(H.3)

n Cu) 3n CJib)Yn Caa)-Jn (va)Yn (ub)

and
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.7.

0 Ojb Y (a) -J(pa) (-b

T I') in (jib) Y (lia)-J (p~a) Y (ib)

By examining the ascending series for Jnand Y n 261, one will note that .

i(_z) (-1) n,), (H.5)

and Y can be put in the form
n

2
Y' (z) = Y (z) + - In J~z WH6

A n.

where Y(z) has the property that Y(-z) =(-1) V(z). Consequently,

2 -Z n
Y~ (-Z) Y(-z) + 1n J~ (-Z) =(1n n

2 z
Y n(Z) + -1T In 7 J (z) ±j 2J n(z) 1  (H.7)

Formally differentiating (H.5), (H.6) and (H.7) yields

Y, - 2 j

Y (z) (Z ) + ~ JnZ + in -Ji) ± j2~

n1 - 1 n n ()+Jn~z n n Jn(z) 2nZ

5. 246



It follows from (H.5)-(H.1O) that

Pn(u)= (-1) Jn (ub)} (1 [Y(ia) + in J J(pa)
n__ 7r 2a 2

Sn(-1 _

j2J (iia)}} {1)J(iua)} I n-i [ (b)

2 p~b '1-
+ Tr (in T J n ( b ) + ub J,,(ub)) t j2 J n ( b )]I _

I-2 pa
1 (-i)n J(ijb)} 1(_,)n[ (Ua) + . in 2 J (pa) t j2J (a]

nn n_

n(;jal [Yn (uD) +r Xn 2 Jn (pb) ±j21 Jn (jib)]

2n-1
*(-1) {J n(ub)Y n(v~a) -Jn(ua )Yn(ujb)} "n p)

_1)2n {jn(Ujb)Yn (pa) -J~ (ja)Y Y(ub)} S() WH11

and

A niI -1-

n-(jb)} {(-1)~ [Y lia) + 2 (1 J (pa)

ua n-1
+ In J n(jia)) ±j2Jn(pa)I t (-1) J (pa)n n n

n12 1 pb
(-)-[Yn(11b) + 7 (Tb5 J n(pb) + in T J n(lb))

jJu1J) 1  (_,)nJ jib) (_n-1 [Yn(uja)
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2 1 iua '

+ ij (7a J n a) + In n (iia)) t± 2 ~n (ia)I

_,n-Ij '_) 2 pb
-(1 n(,ia)l t( y Y(jib) + In 'I (bib)

j2 J( uaY)b)}OIU'

nn

(H.12)

Thus from (H.11) and (H-.12), it is seen that both P n/S nand 9 /T nare

odd functions of Pi.
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APPENDIX I

I I

CALCULATION OF CYLINDER FUNCTIONS: J, 1, H H

It is well-known that all cylinder functions satisfy the following

recurrence relations:

2n
Cn-1(Z) + C n+(Z) =-Cn(Z) , (I.1)

II

Cn- (Z) - C n+ (z) = 2C (z) (I .2)

where C denotes J, Y and H H H Equation (1.1) indicates that any

two known consecutuve members of a sequence 1Cn(Z)N can be used to

compute the entire sequence. Moreover, the corresponding sequence of

derivatives {Cn(z),o can be subsequently computed via (1.2). Thus it is

sufficient to consider how to evaluate the sequences {Jn(Z) 1 and

lHn(Z)} 0 only.

From experience it is learned that the calculation of the sequence

N
Jn(Z) is stable numerically only if the recurrence relations are

applied downward, and unstable otherwise. In addition, only a finite

sequence can be generated, i.e., N < ®, because of the limited dynamic

range of a digital computer.
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One can verify that the sequence {Jn(Z)}o satisfies (1.1) and
*-.N --on

(1.2), where a is an arbitrary scalar. Next letting Jn(z)l + 1 be such

a sequence that

JN+l (Z)=0 , (1.3)

and

SN(z) (1.4)

where a is some vanishingly small number. The remainders of the

sequence are calculated using the recurrence relation (1.1) downward.

. N A

By setting i n(Z)}o = {a (z)} , one finds J (z) = n (z)/8, n=0,1,...,N,

and thus the sequence J (zIN will be determined as soon as 8 is known.n 0
Noting 8 = J n(z)/J n(z), n=O,1,...,N, it is clear that B=J o(z)/Jo(z)

is most easily determined since J (z) can be simply computed as follows:

1. When Izj < 8,

12 k
(--z )

Sjo(z) (k!) , (1.5)
k =O

where the series converges rapidly.

2. When IzI > 8,

1 ~ jzcose
(Z)= 1f e' 1d.

0 0

where the integral is evaluated by Simpson's quadrature.
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Once the sequence Jn"(z) is generated, one can immediately move

onto the calculation of the sequence {H WIN1 which is described below:

*1. When Izi < 8, Lommel's formula [27, pp. 1431 can be employed to

evaluate Y (z):

z (z/2)kJ

7r (z (log -2 + ')'i (Z) + k=1! (1.7)

10 1 =

where y=lim [1 + 7+ t * + mj - nrn] =.5772157 is known as Euler's

constant. Next it follows from the Wronskian,

2
W{j (z),Y (z)l = J zY (Z) -J (zy (z) wz =,,=..N1n n n+1 n n n+1

(1.8)

that the sequence [Y WZ1~ is readily determined. Finally, making use

of the relation H~ (Z) j (Z) + jY (z), the sequence {H W1} is

obtained quite simply.

2. When IzI ) 8, the sequence IHn)o is directly computed by
first evaluating H (z) via Hankel's asymptotic expansions [261:

-0

* . where

2 2 2 22
*1.3 1.3.5.7

P(Z) =1 + 2+ - + .* ,(.0

2!(8z) 4!(8z)'
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and
2 222 22222 
1 1.3•5 1•3•5•7•9

Q(z) = - 8,+ 3 5+ ••. (I.11)
-- 3!(8z) 5!(8z)

then employing the Wronskian,

j2

W{Jn(z), Hn(Z)} = Jn+1(z)Hn(z) " Jn(z)Hn+l(Z) = z (1.12)

It must be mentioned that, as lmz -, evaluating Jo(z) and Ho(z)

according to (1.6) and (1.9), respectively, will encounter severe num-

erical problems commonly known as computer floating-point overflow and

underflow. Such will prevent one to calculate the sequences {Jn(Z)}

Nand {Hn(z)}o accurately. A simple but effective way to handle these

problems is through the proper scaling of Jo() and H (Z), and hence the
0

resulting sequences. This means that Jn(z) and Hn (z) are being modified

through multiplicative factors 9s and es, respectively, where s is some

appropriate positive real number. Letting {J (z)}° and {Hn(z)}o be the

scaled sequences corresponding to {Jn(z)}o = n(Z)1 , one can write

(z), -N N
ezn(Z)}o= 0 e n(Z)}o = {(3o(z)/Jo(z))Jn(z o (13)

and

N s N
{H(z)}0 = eHn(Z)}o , (1.14)

where

-. ~-So 1 e jzcos-S
J"(z) = e Jo(z) = e d9 (1.15)

0

and Hn(z) are computed sequentially according to the Wronskian,
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W (z), H n(Z)l sJn+ (z)H n(z) -J n(z)H (z) W wz n=O,1,...,N-1,

* (1.16)
with

H (z) SH 0(z) ~F -z[P(z) +jz) (-f/ +s(1.17)

It is important to observe that the function W(n,h) in (4.83) is

independent of the scaling factors e~ This is obvious if one realizes

that (from Equations (4.88)-(4.92))

Hn-(Xb) Hn(Xb)

n Hn(kb) Hn(Xb)

Jn L (ujb)H (p~a)-J (va)Hn (pb) Jn (iub)Hn (1a)-Jn (ya)H~ (0i)

P n n n n n n n

T g~ (1.20)
-. n J n (ujb)Hn(pa)-Jn(pa)H n(jib) J n (Pb)H n(ua)-J n (tia)H n (jib)
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APPENDIX J

ASYMPTOTIC FORM OF 0(v)

In this appendix, an asymptotic form of Q(v), defined by (5.50),

based on the febye approximations is derived. From (4.110) and (4.111),

the Deybe approximations of H, (2 ) and H () can be written as:

S2 e j(/ 2..v2 - v cos-l(v/ )-w/4) 
,( 1

H ( ) (1 1 _ .2 e..

HH.± 2.. H(). (J.1)

where 1€I>II, 1 _VI>!vl/3I, and € large. It follows that

I (1) (2) -1 ;jF(v)
VH (a) H() 2 e

(2 2 V 1/4 02 V )1/4 (33("H 2 ) ( (1 ) I (a2 -.2 ) ( 2 " v 2 ) 
L.

H~(a) H ()
where
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rr- r '. . ,
- 

- . - - .- . . . .. - -

F(v) = - + V(cos (v/Ci) - Cos (v/s)) (J.4)

Also,

K" H(1),(y) 2v

m. ,(I) , ~ j  •(J. 5)
'I'p H~1 (Y)

Employing (J.3) and (J.5) in Q(v) yields

-jF(v) jF(v)

O(v) 2

-V -jF(v) jF(v)t _______ - jF(v) jF(v)I 1
'j /'Cr S- L + e+ Y I-ee

(J.6)

U
Recalling that a = r k2a, = r k2b, and " = k2b, one can deduce

from (J.6) that

k2 le-jF(v) - jF(v)

k2 rj2(/a e ee
O(v) " '

i?:' j k2. (v/a)2--e.JF(v) .eJF(')- + 2.(/a2 r-eJF(v)_eF(v j'

(J.7)

where it is assumed that a>>(b-a) such that (v/b)=(v/a). It can he

readily verified that (J.7) leads to
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-k2 sinF(v)

O(v) ~ k- 2 2(J.8)

rk k /a) 2 cosF(v) -j k2 (v/a) sinF(v)

which is used in (5.51).
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APPENDIX K

STHIN SUBSTRATE APPROXIMATION OF Zv(h)

When a large cylinder of radius a is coated with an electrically

thin substrate, one will have

(ib bV~r2h >> 1 ub-) ut? 1. (K.1)

This permits one to approximate and hence simplify the complicated

function Zv(h) defined in (5.47) as

H(1) ( 2)' (vb) - H2 p)()(b

r vrH ()a)H()vb -H (2)(pa)H(')'(pb)
V

(K.2)

(1) (2)Denoting J.,, H or H by C *one can Taylor expand C (Pa) and
VV V

C (va) about p.b by taking the first two leading terms as follows:

C(ua) C V(Pb) - tC (Iub) (K .3)
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and

C (pa) C uib) - ltC (jib) (K.4)

Since Cv, satisfies the Bessel differential equation, one can write

C V(lib) C C(pb) -[1-)I C (jib) (K.5)

Substituting (K.5) into (K.4) produces

C~ ~ ubi [ Clb (K.6)

It may be pointed out that only (K.3), but not (K.5), is needed in

approximating Zv(h). This is clear when one observes that

[H(1)(pb)-ltH(1)'(pb)]H(2)'(pb)-

* -[H(
2 )(ub)-tH (2)mb)H1)( b)

orr

Z~h) (K.7)

V lit
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APPENDIX L

ROOTS OF P(o) - ywl(a) - wl(a) - 0

It is convenient to consider the roots of P as functions of y.

Formally differentiating P(o) = 0 with respect to y produces

, '" do a do
wl(C) + ywi(a) y - w1 dy = 0(L)

Recalling that w1 satisfies the Airy differential equation, one will

note

II

wa(o) = owl(o) (L..)

It is also clear from the equation P(a) = 0 that

wl(o) ywl(a) (L.3)

Employing (L.2) and (L.3) in (L.1) yields

* do
wl(o) {1 + [y2o 1 0 (L.4)
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One can easily derive from (L.4) the following non-linear differential

equation which governs the roots of P(o) =0:

do 1

dy -1-y
2o *(L.5)

It is readily observed that y=O if only if w (a) = 0. Since wi

vanishes at

a = t j r/3r , p = 1,2,3,..., (L.6)

where T 's are the zeros of A.(-T) (Airy function), one sees that

p 1

o(0) = tp , p = 1,2,3, ... . (L.7)

It is then natural to denote the solution of (L.5) corresponding to the

intitial condition a(0) = tp by ap(y), p = 1,2,3...

N l i (n) dn
Next letting a iypf a(y), one can formally Taylor expand

al(y) about y=O as follows:

1) (0) n .

(Y) - ( n! y • (L.8)

pn nn =0 .-

For notational simplicity the symbol a(n ) will mean a in the

following computations, unless specified otherwise. It is obvious

from (L.5) that

0(1 (0) 1 . (L.A)
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2y ~(1) 2

(2) 2ya + y2 c) = [2ya + y2a( l (1) ] (L.0)
Aa (y) (l-y 2a)Z

a o( 2 ) (0 ) =0 (.t

U

a(3)(y) = [2c+2ya(1)+ya(1)+y2 (2) Ha 1 2 [2yc+y2a ( '][2, (1) (2 )

2a[0(1) )+ {4y[a(I)] +4yaa(a (2)}+3y2[ a(1) ] a(2)

(L.12)

a( 3 )(O) = 2a(O)1 2  2t (L.13)

p

C4 (y) = 2[a(l) +4aa()a ()+4([a(1)j+ao(1) ,(2) }+4y{3[ 1 ]ao2a

+ " l_ 2( +a [(2)15 a( ) ]2+aj(1)a(3) }+6y[ay(1]a(2)

p
+ 6y2a(1)[,(2) ,+3y2[(1)]2 ,(3)

1 6[ ( 1 ) ]+8l (1) (2)+y{22[a(1)] a(2)+4a[7(2)]+4o(01)(1(3)}

+y 2 6a( 1 )[a(2) 2+3[(I)2( , (L.14)

a4(0) 6 . (L.15)
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( 5 )  = 18[a( I )1 a(2)+8[a( I ) 1a(2)+8a[,(2)1'+8,0(l)c(3)

{22[a(1) 2-(2) (2) 24 (1) (3) (1) [a(2) 2

12 a +4a[a ] +4aa ar }+yf44a [

+ 22[a ( I ) 21(3) +4a(1)[a(2) +80a(2)a(3)+4[a(1
1 Ia( 3 )

+ 4aa(2) a (3)+a(1 ((4)a + 2y{6a(1)[a(2 ) 12+ 3 [ , ( 1 2 ( 3 ),

3

y2 B[O(2) + 12a(1)a(2) a (3)+ B a(1)a(2)a(3)+3[a() ] (4)-

48[o(1)] a(2)+12a[a(2)I + 2 a (1) a(3)+y{6 Oa(1) [(2)]

+ 6[a(2) )a(2)a(3)}, (L.16)

0(5)(0) 24t 2  (L.17) -

Sp

o
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(6) ( 96a(1) [(2) +48[(1)2 ,(3)+12o(1) [o(2)2 +24(?2)o(3)

22S121(1)3 2()+120(2) o3+12o0(1) o4+y600(1)[(2)2

Ip ,2 3
: .:+ 32[0 ( .1)] 0(3) + 12 o o (2)0(3)4 o o0(1) o (4) }+y{60[o (2 ) ]

+ 120o(1)0(2)0(3) +64(1) (2) o(3)+32[o(1)] 0(4) +12 a(3) a

+12 a( 1 ) a (2) a (3) +12aa(2) CT(4)+4 [ y(1) J2 a(4 )

+ 40o(2) (4) +4o(i) (5)1 + y{6[(1)J (4) +12[a(2)3

I + 360(1)0(2)C0(3)1 + y2

i 168a(1)[a(2) ] +92' 0(3) +16o() (4)+48 o(2) 0(3)+y{72[o(2)]

232o(1)0(2)o(3)+12o[o(3)] +16oo(2)o(4)+4oo(I)o(5)+42o(1)]2o(4)}

+ y2{. (L.18)

a--

0 (6) (0) =280t p (L.19)
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(7) = 168(2) (+336(1) (2) (3)+184 (1) (2) (3)+921(1) (4)

2

()(5) ()(2(3+ 16[(I)] a (4) +1600(2)a(4) +16oo(I)5 +48a() (2a

48a [a(3 )7]2+48au (2 ) a0(4 )+72 [a(2 ) ] +2 3 2 (1 ) a(2) a(3) +12a [,(3)]

+ 1600(2) (4)+4c(1a(5) +42[0(1)] 2(4)+y {1 . . +y 21...

(L.20)

a(7)(0)- 900 + 720tp (L.21)

Substituting (L.9), (L.11), (L.13), (L.15), (L.17), (L.19) and (L.21)

(n) (n)
into (L.8), and recalling a (y) a (y), one obtains

() I + t y2+y3 +t 2y4 +3 tp. + t + 5/4] y +
pp p P

(L.22)

Integrating both sides of (L.21) over the interval [o,y], one finally

arrives at

2
3 14 1L 5CYp(y) : tp + y + 3 Y + 4 y  + 5 Y + 18 Y"

3
5 7

+ [7 + ] y , p = 1,2,3,... (L.23)

The Taylor series expansion (L.23) of the roots of ywj(o)-%j(a) : 0

is most suitable when IyI << 1.
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